GridPix Detectors Production – Characterization – Applications

K. Desch – University of Bonn

UNIVERSITÄT <mark>BONN</mark>

Terascale Detector Workshop München, 28/02/2018

UNIVERSITÄT BONN

UNIVERSITÄT SIEGEN

Nikhef

GridPix - InGrid

Micromegas mounted on a pixel chip (= "GridPix") Via photolithographic post-processing (= "InGrid")

Pioneered by U Twente&Nikhef&CEA J. Schmitz, M. Chefdeville et al.

Pixel chip: Timepix / Timepix3 256x256 pixels (55x55 μ m²) ~ 2 cm² Typical threshold: few 100 e⁻

Timepix

GridPix – InGrid: Features

• Perfect alignment of grid holes with pixels

- Typical gas amplification ~2000, typical threshold ~few 100 e-→ single electron efficiency ~100% 1 primary electron → 1 pixel
- Ultimate spatial resolution for a gaseous detector (limited by diffusion)
- Measurement of deposited energy by pixel <u>counting</u> $(E_{\nu}, dE/dx)$
- Fully digital no analog noise, no gain fluctuations in "counting" mode

GridPix – InGrid: production

Rather complex and time-consuming process:

- 1. Wafer/Chip cleaning
- 2. PECVD deposition of Si_xN_y layer (4-8 μ m)
- 3. Spin coating of SU-8 photoresist (50 μ m)
- 4. Photolithographic exposure of SU-8
- 5. Sputtering of Aluminum layer (1 μ m)
- 6. Photoresist application & exposition
- 7. Wet etching of Al
- 8. Develop SU-8 \rightarrow remove unexposed SU-8

RED: very critical!

GridPix – InGrid: Wafer-based production

[Yevgen Bilevych]

- transferred original single-chip process to a full 8" wafer
- produce up to 107 InGrids at once at reasonable cost in reasonable time
- technologically more difficult (e.g. SiN layer homogeneity, masking of bonding pads)

[Yevgen Bilevych]

What can go wrong – examples...

Single dust grains or stress in SiN layer can cause cracks in SiN protection layer \rightarrow Single discharge can kill a chip

Slightly too long development of SU-8 in chemical bath → delamination of Al grid

Too high T during
Al sputtering
→ cross linking of
unexposed SU-8
→ remnants of SU-8
underneath the grid

[Jonathan Ottnad]

InGrid production

- careful analysis of chip deaths due to discharges (mostly DAC failures)
- now spark proof significant improvement in cleaning/inspection and SiN deposition (new PECVD machine at IZM)

Typical discharge event

Stress test:

Operation at 550 V \rightarrow "constant" discharges

- \geq 10⁷ sparks in few hours
- Chips survived
- > Still good energy resolution
- > But visible damage due to sparks (of course...)

[Lucian Scharenberg et al]

InGrid production

Octoboard

Many Octoboards

1 fully equipped LCTPC module (96 Timepix-GridPixes) ... obviously we didn't have enough high quality grids...

[Jochen Kaminski, Michael Lupberger, et al]

Wafer-based production: future

We soon will have cleanroom infrastructure for microstructuring capable of producing InGrids

- Sputtering
- PECVD
- RIE
- Mask-less aligner
- Wet chemistry for cleaning/photolithography

Research Building for Detector Physics

10

Wafer-based production: future

We soon will have cleanroom infrastructure for microstructuring capable of producing InGrids

- Sputtering
- PECVD
- RIE
- Mask-less aligner
- Wet chemistry for cleaning/photolithography

Research Building for Detector Physics

11

Timepix vs. Timepix3

	Timepix	Timepix3
Pixels	256 x 256	256 x 256
Pixelsize	55x55 μm²	55x55 μm²
Noise (ENC)	~ 90 e-	~ 60 e⁻
Timing clock	up to 80 MHz	640 MHz
Mode	TOA or TOT	TOA and TOT
Readout	frame-based r/o speed: o(100 Hz max)	data driven 8 x 640MHz serial links r/o speed o(MHz) (occupancy dependent)

First (low yield) Timepix3 wafer equipped with InGrids

Timepix3 Quad Module

Cooling channels

Nikhef Lepcol group [C. Ligtenberg, K. Heijhoff, H. van der Graaf, F. Hartjes, P.M. Kluit, G. Raven, J. Timmermans]

GridPix – Applications

3 examples:

1. Large TPC - Tracking

2. Single (soft) X-ray detection

3. Neutron detection

1. GridPix – Large TPC Tracking

1. GridPix – Large TPC Tracking

Event_9_Drawing_3_Tracks_6572_Hits

Data from testbeam at DESY (2015) in LCTPC Prototype with B=1T

- Tracking possible even in "noisy" environment
- Double track resolution
- δ removal

[Amir Noori Shirazi, Siegen]

1. GridPix – Tracking detector

Transverse resolution: fully limited by single-electron diffusion (can't get any better)

Longitudinal resolution: limited by slow Timepix clock and <u>Timewalk</u>

→ Huge improvement with Timepix3 possible

[Michael Lupberger, Bonn]

[Kees Ligtenberg et al]

Timepix-3 Test Beam @ELSA

ANEMONE Mimosa Beam Telescope

2.5 GeV electrons from ELSA (at kHz rate)Trigger by scintillating plane6 Mimosa pixel planes as beam telescope

V grid	350 V	can be fast
E drift	280 V/cm	
rotation	17 degree	
	0 degree	
threshold	700e	

Timepix-3 Test Beam @ELSA

Timepix-3 Test Beam @ELSA

Timewalk correction possible (TOT and Time per pixel in TPX3!)

With TPX3 both transverse and longitudinal resolution is dominated by diffusion!

Timepix-3 Test Beam @ELSA

2. GridPix – X-Ray detector

Soft X-Rays (photo effect) produce one electron per 26 eV X-ray energy \rightarrow Count the electrons on the GridPix to measure energy

[Christoph Krieger]

2. Application: solar axion searches

[Christoph Krieger]

- Axions/chameleons produced in the Sun
- Reconversion to X-ray photons in strong magnetic field (Primakoff effect)

CERN Axion Solar Telescope

2017 detector with 7 chips

CAST SDD

IAXO

[A. Lindner, U. Schneekloth, DESY]

IAXO detectors: X-ray windows

300 nm Silicon-Nitride window at 1.5 bar overpressure

[Krieger, Schiffer et al, Bonn & NORCADA Inc.]

3. GridPix – Neutron detector

³He crisis, many new neutron facilities (ESS!)

 \rightarrow need for alternative detector for slow neutrons.

3. GridPix – Neutron detector

Idea: use one nucleus for t_0 , the other for (x,y,z) (TPC)

BODELAIRE (M. Köhli, J. Kaminski)

3. GridPix – Neutron detector

GridPix – Neutron detector

⁴He²⁺, ⁷Li³⁺ lons seen by GridPix

Neutron detector

Use Timepix timing to determine start/end of track

Neutron detector – position resolution

Neutron detector – position resolution

Summary & Conclusions

- GridPix detectors combine advantages of gaseous detectors with highest possible resolution
- Production technology is becoming (more) mature
- Various applications (TPC tracking, X-rays, neutrons, and more ...)

Backup

SRS Readout

Developed Timepix readout system customized for HEP applications

- based on "Scalable readout system" (SRS) developed in RD51
- zero suppression on FPGA
- maximum readout speed
- up to 32 Timepix / SRS-FEC
- easy to synchronize >1 FECs

",small" readout based on FPGA development board (used e.g. in CAST)

intermdiate board to host 12 x 8 Timepix chips

Neutron detector

