

The Belle II Experiment

C. Marinas University of Bonn

cmarinas@uni-bonn.de

- Flavor Physics Program
- The SuperKEKB Accelerator

The Belle II Detector

The Three Frontiers

• The Intensity Frontier: Search for rare new phenomena using *medium-energy high-luminosity* machines

cmarinas@uni-bonn.de

The B Factories: A Success Story

- The B factories Belle and BaBar ran from 1999 to 2010.
- They recorded over 1.5 ab^{-1} of data (1.25 \cdot 10⁹ BB).
- Both experiments provided the experimental confirmation that led to the 2008 Nobel prize

Super Flavor Factory

- Search for physics phenomena beyond SM in B, D and τ decays through precision measurements of the CKM sector and studies of rare or forbidden processes
- Many potential NP sources:
 - Flavor changing neutral currents
 - Lepton flavor violating decays
 - $B \rightarrow \tau$ tree level new physics
 - New sources of CPV

High luminosity accelerator (SuperKEKB
High-resolution detector (Belle II)

Observable	SM theory	Current measurement	Belle II *
		(early 2013)	(50 ab^{-1})
$S(B \rightarrow \phi K^0)$	0.68	0.56 ± 0.17	± 0.018
$S(B \rightarrow \eta' K^0)$	0.68	0.59 ± 0.07	± 0.011
α from $B \rightarrow \pi \pi$, $\rho \rho$		$\pm 5.4^{\circ}$	±1°
γ from $B \rightarrow DK$		$\pm 11^{\circ}$	$\pm 1.5^{\circ}$
$S(B \rightarrow K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20	± 0.035
$S(B \rightarrow \rho \gamma)$	< 0.05	-0.83 ± 0.65	± 0.07
$A_{CP}(B \rightarrow X_{s+d} \gamma)$	< 0.005	0.06 ± 0.06	± 0.005
A_{SL}^d	$-5 imes 10^{-4}$	-0.0049 ± 0.0038	± 0.001
$\mathcal{B}(B \rightarrow \tau \nu)$	$1.1 imes 10^{-4}$	$(1.64 \pm 0.34) \times 10^{-4}$	$\pm 3\%$
$\mathcal{B}(B \rightarrow \mu\nu)$	4.7×10^{-7}	$< 1.0 \times 10^{-6}$	$\gg 5\sigma$
$\mathcal{B}(B \rightarrow X_s \gamma)$	$3.15 imes 10^{-4}$	$(3.55 \pm 0.26) \times 10^{-4}$	$\pm 6\%$
$\mathcal{B}(B \rightarrow K^{(*)}\nu\overline{\nu})$	$3.6 imes 10^{-6}$	$< 1.3 imes 10^{-5}$	$\pm 30\%$
$\mathcal{B}(B \rightarrow X_s \ell^+ \ell^-)$ (1 < q ² < 6 GeV ²)	$1.6 imes 10^{-6}$	$(4.5 \pm 1.0) \times 10^{-6}$	$\pm 0.10 \times 10^{-6}$
$A_{\rm FB}(B^0 \rightarrow K^{*0}\ell^+\ell^-)$ zero crossing	7%	18%	5%
$ V_{ub} $ from $B \to \pi \ell^+ \nu~(q^2 > 16{\rm GeV^2})$	$9\% \to 2\%$	11%	2.1%

Linac

Mt. Tsukuba

SuperKEKB ring (HER+LER)

onn.de

Belle II detector

Tsukuba Tokyo

KEK - Tsukuba

Going For a Super B-Factory: SuperKEKB

Complete refurbishment to achieve x40 higher luminosity compared to KEKB

10

The Belle II Detector

40 times higher luminosity implies

- Higher event rate
 - Higher trigger rate
 - Increased DAQ and computing requirements
- Higher background
 - Radiation damage
 - Occupancy
 - Fake hits and pile-up
- Changes in detector
 - $\beta\gamma$ reduced by factor 1.5
 - Improved vertexing needed
- Results in significant upgrade

→ Belle II

The Belle II Collaboration

The Belle II Detector

$$e^+e^- \rightarrow \Upsilon(4s)$$
 $E_{cm} = 10.58 \text{ GeV}$

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$$
 $E_{cm} = 10.58 \text{ GeV}$

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$$
 $E_{cm} = 10.58 \text{ GeV}$

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$$
 $E_{cm} = 10.58 \text{ GeV}$

Precise vertexing \rightarrow High resolution and light inner detector

Vertex Detector: PXD and SVD

Vertex Detector: PXD and SVD

cmarinas@uni-bonn.de

Belle II VXD Requirements and Parameters

	Belle II PXD
Occupancy	0.4 hits/µm²/s (3% max)
Radiation	2 Mrad/year
	2·10 ¹² 1 MeV n _{eq} per year
Integration time	20 μs
Momentum range	Low p (50 MeV - 3 GeV)
Acceptance	17°-155°
Material budget	0.21% X ₀ per layer
Resolution	15 μm (50x75 μm²)

- Impact parameter resolution (15 μ m), dominated by multiple scattering mainly in BP \rightarrow Pixel size (50 x 75 μ m²)
- Lowest possible material budget (0.21% X₀/layer)
 - Ultra-transparent detectors
 - Lightweight mechanics and minimal services in physics acceptance

The DEPFET Ladder

cmarinas@uni-bonn.de

Belle II PXD Ladder

ົ

~400000 DEPFET Pixels
50x75 μm² pixel pitch

75 μm thickness

See L. Andricek's talk

PXD Module Performance: Test Beam

universität**bonn**

Belle II SVD Module

- Double Sided Silicon strip Detector Low material budget ~0.7 X₀ per layer "Chip-on-sensor" design for central modules
- APV25 readout chip
 - Fast shaping time, radiation hard, thinned to 100μm
 - Heat dissipation up to 700W \rightarrow CO₂ cooling

VXD Online Data Reduction

- Amount of data created by PXD is larger than the data generated by all other subdetectors
- Only reduced PXD data is written to tape
- Use tracks in SVD (and CDC) to find PXD regions of interest

VXD Online Data Reduction

Test beam: 4 GeV electrons in 1 Tesla solenoid field

Phase 2

- The SuperKEKB accelerator will be operating, for the first time, with QCS magnets
 First operation with focused beams
 First beam collisions
- The Belle II detector, minus the vertex detector (VXD), rolled into the beam line

Phase 3 VXD Volume

PXD and SVD will marry mid August 2018... ... but before that: Understanding the backgrounds

31

Beam backgrounds studied during SuperKEKB commissioning phases with dedicated radiation monitors

Motivation for **BEAST II**:

- Machine commissioning
- Radiation safe environment for the VXD:
 - Two layers PXD
 - Four layers SVD
 - Dedicated radiation monitors FANGS, CLAWS, PLUME

Radiation monitors:

- FANGS: Hybrid silicon pixel detector with FE-I4 front end (ATLAS)
- CLAWS: Plastic scintillator with SiPM readout (ILC)
- PLUME: Double sided ladders with active CMOS pixel sensors (STAR)

VXD Clean Room

B4 VXD clean room

- Granite table with Phase 2 BP
- Rotating stage

11

Phase 2 PXD

- Modules arrived at KEK in September 2017
- Attached to the beam pipe and integrated with the rest of the BEAST detectors during Sep-Nov
- Insertion inside Belle II in mid Nov

3 FANGS staves

-

18

and sugar and the said and the said

half shell for BEAST-ra

Second

cmarinas@uni-bonn.de

2 CLAWS staves

CLAWS

an . the

PLUME

2 PLUME ladders

ties

63

4 SVD layers

41

SVD

-

Transportation

-

Belle II Roll-in

cmarinas@uni-bonn.de

Open Endcaps and QCS Insertion

cmarinas@uni-bonn.de

Cabling

SILK.

We develop fancy detectors... Efficiency, SNR, BUT services will always kill you, in the end!

First Cosmic Through VXD

- Belle II will search for New Physics at the intensity frontier with a target integrated luminosity of 50 ab⁻¹
- Belle II detector is now complete for Phase 2 – Global Cosmic Ray run ongoing right now
- Accelerator to start operation in March 2018 (Phase 2) and start taking physics data beginning 2019 (Phase 3)
- Stay tuned!

cmarinas@uni-bonn.de

Thank you

VXD Global Cosmic Ray

cmarinas@uni-bonn.de

PXD9 DEPFET Sensors

- Small matrices 80x32 pixels Test systems
- Full modules (large matrices) 768x250 pixels VXD combined test beams BEAST Phase 2 Full Belle II PXD

Hybrid 5 – Full System Demonstrator

• PXD9 small Belle II type matrix

- Pixel pitch: $50x55 \ \mu m^2$
- Thinned to 75 μm
- Gate length: 5 μm
- Thin gate oxide
- 32x64 pixels readout
- Final readout chain
 - SwitcherB
 - DCDB
 - DHPT
 - − DHPT \rightarrow DHH

cmarinas@uni-bonn.de

DCD Characterization

channel053

Performance according to specs

- Linearity
- Noise
- Gain

cmarinas@uni-bonn.de

DHP Characterization

10 m Infiniband

cmarinas@uni-bonn.de

DEPFET Characterization

DEPFET Characterization

cmarinas@uni-bonn.de

position along rows [mm]

Beam tests

DEPFET PXD extensively tested over several campaigns
 120 GeV pions at CERN-SPS
 1-5 GeV electrons at DESY
 1T Magnetic field

- Sensor properties Charge collection homogeneity, operating points, efficiency, angular scans
- System related aspects Back end electronics

Here, just an appetizer

cmarinas@uni-bonn.de

Belle II PXD MIP Signal

- Measured 4 GeV electrons at different incidence angles
- Checked against Geant4 simulation with DEPFET digitizer
- $g_q = 740 \pm 50 \text{ pA/e}^-\text{ measured}$

Belle II PXD MIP Signal

- Measured 4 GeV electrons at different incidence angles
- Checked against Geant4 simulation with DEPFET digitizer
- $g_q = 740 \pm 50 \text{ pA/e}^-\text{ measured}$

Belle II PXD Residuals

- Matrix tilted along column: multi-column clusters
- Expectation for single pixel readout: RMS = $50 \,\mu\text{m}/\sqrt{12} \approx 14.5 \,\mu\text{m}$

cmarinas@uni-bonn.de

Belle II PXD Efficiency

- Matrix tilted along column: multi-column clusters
- Expectation for single pixel readout: $RMS = 50 \,\mu m / \sqrt{12} \approx 14.5 \mu m$

cmarinas@uni-bonn.de

Belle vs Belle II

Several Test Vehicles

Hybrid4: DCD stand-alone tests (/w small DEPFET matrix)

DCDB2, DCDB4 DCDr/o as interface to FPGA System Different versions of SWB, Switcher-B18 v2.0 (gated mode)

Hybrid5: single ASIC system (/w small DEPFET matrix) DCDB4 DHPT 1.0 Switcher-B18 v2.0

Hybrid6: first multi-chip system with large proto. matrix DCDB2, DHP0.2, Switcher-B18 v2.0

EMCM: main test vehicle for multi-chip systems (/w matrix) Different versions of ASICs... DCDB2, DCDB4, DHP0.2, DHPTv1.0, Switcher-B18 v1.0 & v2.0

PXD9 Pilot Modules: DCDB4, DHPT1.0 (&DHPT1.1), Switcher-B18 v2.0