



# 200 m<sup>2</sup> Silicon Detectors Today and Tomorrow

# The ATLAS and CMS upgrades with a backdrop from the current CMS tracker

Institute of Experimental Particle Physics (ETP)



# **High Luminosity LHC**





- Luminosity upgrade for post-LS3 running
- Peak luminosity ~7.5x10<sup>34</sup> cm<sup>-1</sup>s<sup>-1</sup>
- Pile-up of up to 200
- Hit rates up to 3 GHz/cm<sup>2</sup>
- Civil engineering for new access shafts and service tunnels
- New Nb<sub>3</sub>Sn magnets (11 T)
- Crab cavities

# 200 m<sup>2</sup> of silicon over time







- Inner tracking detectors will be replaced for both ATLAS and CMS during LS3
  - Both upgraded detectors will have about 200 m<sup>2</sup> of silicon area
- Events to be reconstructed go



#### CMS run 2 ~25 pile-up



# **Radiation envionment**



Radiation environment at HL-LHC will become increasingly hostile

- Inner layers of pixel detectors at few cm in radius will need to stand fluences in excess of 10<sup>16</sup> MeV neutron equivalent
- Even outer layers "far away" from interaction point will see >10<sup>14</sup> MeV neutron equivalent
  - similar or more than innermost strip tracker layers at 20 cm for today's trackers after 10 years of LHC running



### **ATLAS and CMS Trackers – post LS3**





#### What's old, what's new, what's....





Both trackers cover  $|\eta| < 4.0$  instead of  $|\eta| < 2.5$ 

Karlsruhe Institute of Technolog



- Both trackers cover  $|\eta| < 4.0$  instead of  $|\eta| < 2.5$
- ATLAS: Micro pixel inner tracker, strip tracker in outer region
- CMS: Micro pixel inner tracker, strips+macro pixel medium radii, strip tracker in outer part

Karlsruho Instituto d



- Both trackers cover  $|\eta| < 4.0$  instead of  $|\eta| < 2.5$
- ATLAS: Micro pixel inner tracker, strip tracker in outer region
- CMS: Micro pixel inner tracker, strips+macro pixel medium radii, strip tracker in outer part
- Both use inclined geometries (ATLAS pixel, CMS TBPS)



- Both trackers cover  $|\eta| < 4.0$  instead of  $|\eta| < 2.5$
- ATLAS: Micro pixel inner tracker, strip tracker in outer region
- CMS: Micro pixel inner tracker, strips+macro pixel medium radii, strip tracker in outer part
- Both use inclined geometries (ATLAS pixel, CMS TBPS)
- CMS: L1 trigger capability

### **Number of channels**



Number of channels increases by orders of magnitude

ATLAS Strips ATLAS Pixels CMS Strips CMS Pixels



Karlsruhe Institute o



- ATLAS system much bigger
  - R: last layer at 27 cm (CMS 15.6 cm)
  - Z: last disk at 3 m ( CMS ~2.5 m)
  - Area: ~13 m<sup>2</sup> ( CMS: 4.87 m<sup>2</sup> )
  - 5 barrel layers
- CMS innermost layer closer to IP
  - R = 2.9 cm (ATLAS: 3.9 cm)



#### Technologies:

- Thin planar n-on-p detectors (maybe/probably 3D for first layer for both, ATLAS maybe CMOS for last layer?)
- Common R&D for readout chip (RD53) + customizations for each experiment?
- 1x1 (ATLAS only), 2x1 or 2x2 readout chips per module





Cell size:

- 50x50 μm<sup>2</sup> or 25x100 μm<sup>2</sup> under discussion for both collaborations
- Recall currently:
  - **ATLAS 50x400 μm<sup>2</sup> (IBL: 50x250 μm<sup>2</sup>)**
  - CMS: 100x150 μm<sup>2</sup>
  - $\rightarrow$  Factor 5-8 reduction in pixel area
- Serial powering





Cell size:

- 50x50 μm<sup>2</sup> or 25x100 μm<sup>2</sup> under discussion for both collaborations
- Recall currently:
  - **ATLAS 50x400 μm<sup>2</sup> (IBL: 50x250 μm<sup>2</sup>)**
  - CMS: 100x150 μm<sup>2</sup>
  - $\rightarrow$  Factor 5-8 reduction in pixel area
- Serial powering





- CMS Phase 0 tracker has LOTS of layers
  - Lots of redundancy for tracking
  - In return lots of services needed









- Number of Barrel layers decreased in both case
  - CMS Phase 0: 14 Layers
  - ATLAS Phase 2: 9 Layers
  - CMS Phase 2: 10 Layers
- Strips + Pixels





- Even more striking:
  - At R > 40 cm
    - CMS Phase-0: 8 layers
    - ATLAS Phase-2: 4 layers
    - CMS Phase-2: 4 layers





### Even more striking:

- At R > 40 cm
  - CMS Phase-0: 8 layers
  - ATLAS Phase-2: 4 layers
  - CMS Phase-2: 4 layers

# Scaling of strip cell sizes





Cell sizes decrease by factor ~4 (special case: CMS macro pixels)

## Scaling of strip cell sizes





- Cell sizes decrease by factor ~4 (special case: CMS macro pixels)
- Cell occupancy kept low even at pile-up ~200

## Scaling of strip cell sizes





- Cell sizes decrease by factor ~4 (special case: CMS macro pixels)
- Cell occupancy kept low even at pile-up ~200
- What does this mean for the modules we are using?



### **New Modules**



ATLAS: stereo angle in wafer for endcaps, readout chips on module for more flexible granularity





CMS:  $p_T$  modules for L1 trigger information, no stereo angle possible, readout chips at the edges, tight tolerances on sensor tilt





### **Mechanics – Outer Barrel**





CMS TB2S ladder: modules place alternating r for overlap,  $p_{T}$  modules for triggering (*module* is the system, no other card)

### **Mechanics – Endcap**



ATLAS successfully employed the concept of full disks in phase 0, now CMS is going to build the phase 2 endcaps using (half-)disks



#### ATLAS SCT Phase 0 disks







CMS successfully employed the concept of petals in phase 0, now ATLAS is going to build the phase 2 encaps using petals



CMS Phase 0 Petal



ATLAS Phase 2 Petal Thermomechnical Prototype

# So what is the "right" solution to build an endcap?

#### CMS:

- very few module types (rectangular, same as barrel)
- Mechnically simple and lightweight
- Modules "on disk"
- Service routing not always easy
- More overlap due to rectangular modules

#### ATLAS:

- Rather complex module geometry
- In return: common service concept for barrel and endcap
  - Modules on carbon fiber planks
  - Services co-cured onto carbon fiber skins
- High parallelism during construction
- System-like testing possible early on
- Easy replacements of non-functioning components (full petals)





# Cooling

- Both collaborations use evaporative CO2 cooling
  - Low mass pipe work
  - Lighter liquid
  - High heat transfer
  - Environmentally friendly
- Successfully used in LHCb, ATLAS IBL, CMS Phase-1 Pixel
- Downside
  - High operating pressure BUT
  - Stored energy (pressure X volume) comparable to other refrigerants







# Cooling



#### Power requirements

- CMS Phase 0: 60 kW (strips) + 3.6 kW (pixels), **198** cooling loops (180 strips, 18 pixels)
  - ATLAS: 89 kW (Strips) + 100 kW (pixels), 100 cooling loops (72 strips, 38 pixels)
- CMS: 100 kW (OT) + 50 kW IT (IT), 66 cooling loops (46 strips, 20 pixels)

#### Several identical cooling units in service caverns foreseen for both collaborations

- Redundancy foreseen to allow single cooling plants to be under maintenance or repair without loss of operations time
- Assumed cooling plant power 30-50 kW

#### Distribution

- Transfer lines to experimental cavern
- First manifolds in accessible locations
  - Muon system (ATLAS)
  - Experimental Cavern balconies (CMS)
- Further splitting to capillaries inside detector volume



# **Material Budget**



Material budget MUCH reduced for both concepts compared to phase 0 detectors





- CMS Phase 2
  - 2S modules: 10 CHF/cm<sup>2</sup>
  - PS modules: 15 CHF/cm<sup>2</sup>
- ATLAS Phase 2
  - Strip Modules: 14.3 CHF/cm<sup>2</sup>
- CMS Phase 0
  - sensor fabrication on 6 inch instead of 4 inch wafers reduced the sensor cost to 5–10 CHF/cm<sup>2</sup>
- Both collaborations use 6" as baseline for phase-2
  - $\rightarrow$  can't we gain by going to 8" technology instead?

# 8" Technology

- Sensors clearly contribute a large fraction to the overall cost
- 8" clearly cheaper in terms of CHF/cm<sup>2</sup> but can we use this gain?
- Examples of good use of going to larger wafer sizes





3 sensors on 4" wafer 8 sensors on 6" wafer

CMS HGCAL wafer 6" (left) or 8" (right) All the details on this from K.Gill

# 8" Technology

- Do you change the layout of the detector (e.g. strip length) to better match the new wafer size?
  - More tiling probably increases number of modules
  - Or: better use of area might couple production of different module types
- Other question marks:
  - Number of available production lines?
  - Yield?
  - $\rightarrow$  For phase-2 both collaborations do not adopt 8" as baseline



### Module assembly



- CMS Phase 0 Strip Tracker
  - Automated assembly with gantry robot
  - Identical hardware at different assembly centers
  - 6 assembly centers doing module production



- 15 geometries means customization for several components like trays to hold modules and pickup tools
- Total of 17000 modules produced
- Achievable throughput:

15-20 modules per day

### Module assembly



hents

- CMS Phase 0 Strip Tracker
  - Automated assembly with gantry robot
  - Identical hardware at different



- With high module counts also in the phase 2
  trackers AUTOMATED ASSEMBLY
  clearly the right solution?
- Total of 17000 modules produced
- Achievable throughput:

15-20 modules per day

as



# ATLAS:

- 12688 Barrel Modules, 8 production centers, 550 working days\* → 2.9 modules/day
- 7976 End-cap Modules, 7 production centers, 550 working days\* → 2.1 modules/day

\*)3.5 years total time assumed but production centers at 50% efficiency during first year, estimates include yield estimates for all parts in the chain

CMS:

- 7680 2S modules, 5 production centers, 400 working days\*\* → 5 modules/day
- 5616 PS modules, 3 production centers, 400 working days\*\* → 5 modules/day

\*\*) sites dimensioned to complete module production in two years while three years are available in the schedule

## $\rightarrow$ Answer: NO automated production for both collaborations

# Conclusions



- Two very interesting and challenging tracker designs with some 200 m<sup>2</sup> of silicon are under development for the HL-LHC running
- Many lessons have been learned and applied from the previous construction round
- Collaborations reached different (almost complementary?) conclusions how to build the trackers
  - In both cases choices are well motivated and justified
  - Solutions adopted do not agressively try to max out available technology for size and throughput

8" wafers

Automated module assembly

# Conclusions



- Two very interesting and challenging tracker designs with some 200 m<sup>2</sup> of silicon are under development for the HL-LHC running
- Many lessons have been learned and applied from the previous construction round
- Collaborations reached different (almost complementary?) conclusions how to build the trackers
  - In both cases choices are well motivated and justified
  - Solutions adopted do not agressively try to max out available technology for size and throughput
    - 8" wafers
    - Automated module assembly

Let's take 10x10 cm<sup>2</sup> silicon wafers, the ATLAS phase-2 number of assembly sites, paired with the CMS phase-0 production rate, work for the 400 days that CMS phase-2 assumes in their planning and have a **1000 m<sup>2</sup> silicon detector!** 

BACKUP



# **Result of cooling problems in real life**





### **CMS Phase 0 Tracker Cooling**



- 3 non-redundant C6F14 cooling plants with about 90 kW total power
  - 2 strips + 1 pixels (phase-0), all located in experimental cavern
  - 198 loops from cooling plants to detector
- In one strip tracker cooling plant problems with leaks
  - Overpressure accident in 2009
  - Several detector loops developed leaks
    - short periods at >30 kg/d of C6F14!
  - 5 detector loops had to be closed to reach low sustainable leak rate



### Automated module assembly for CMS phase-0 Tracker



- Time needed to reach "proof of principle": about 1.5 years
- Additional time to reach steady full production rate: 1-1.5 years
- Cost for 6 assembly robots: ~1 MCHF
- large variety of module types (15) implied many different component and module trays as well as different types of pick-up tools. Strong engineering and machining support groups at each assembly centre were essential for achieving reliable results
- Simplified threshold calculation as to when automated production can become viable: >~ 5000 modules needed in short time ( < 2 years)</p>
- However many other factors contribute
  - In house competence, existing laboratory resources, available funding

A.Honma, Industrialization of Silicon Detector Module Production, Vertex 2010

### Automated module placement for ATLAS SCT



assembly of modules onto the cylinder structure



## Module assembly

# ATLAS

- Pre-tested ASICs are glued onto hybrids and wire bonded
- Hybrids are tested electrically
- Hybrids and power boards are glued to the sensors.
- ASICs are wire bonded onto sensors
- Full module is tested
- CMS Phase 2
  - Dedicated jigs for (largely identical for 2S and PS modules)
    - Gluing HV circuitry to sensor backplane
    - Gluing 2 sensors to AL-CF bridges
    - FEH and Service hybrid to sensor assembly
    - Wire-bonding







#### Sensor to AL-CF bridge gluing

Front-end and Service hybrid gluing



### **CMS Barrel Mechanics – TBPS Section**





- TBPS barrel composed of planks and rings
- Tilted geometry to increase coverage for L1 trigger



