CEPC

Mikael Berggren¹

¹DESY, Hamburg

FLC retreat, Dec. 2017

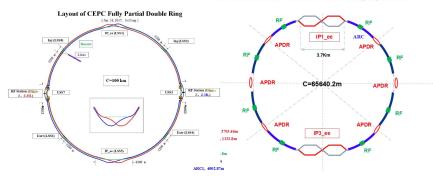
CEPC:

- What it is?
- Where is it?
- Who is it?
- Money
- Time-line
- 6 Detectors
- SW
- A few words on the Physics
- My Summary

All material is from talks given at the "International Workshop on High Energy Circular Electron Positron Collider" at IHEP, Beijing, 6-8 Nov 2017 (indico).

What is it?

- Baseline design & options for the Conceptual Design Report
 - circumference=100km,E_{cm} =240 GeV, power per beam ≤ 30MW
 - design luminosity: $2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$


$$\sim 2 \times 10^{34} cm^{-2} s^{-1}$$
 (240 GeV)
 $\sim 1 \times 10^{34} cm^{-2} s^{-1}$ (90 GeV)

- two layouts: double ring as the default advanced local double ring as an option
- two independent detectors
- Benefits
 - mature technologies, Z+ZH program
 - high energy pp option beyond the Higgs(Z) factory
 - synchrotron light source (?)

What is it?

CEPC Advanced Partial Double Ring Option II

CEPC Baseline Design

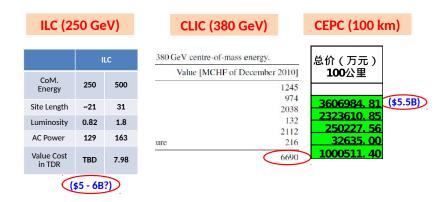
Better performance for Higgs and Z compared with alternative scheme, without bottle neck problems, but with higher cost

CEPC Alternative Design

Lower cost and reaching the fundamental requirement for Higgs and Z luminosities, under the condition that sawtooth and beam loading effects be solved

Where is it?

- 1) QingHuangDao, Hebei (completed preCDR)
- 2) Huangling, Shaanxi (2017.1 signed contract to exp
- 3) ShenShan, Guangdong, (completed in August, 2016)



Who is it?

Statistics from November '17 workshop:

- Total 260 participants
 - 160 from China
 - 50 from Europe (10 from Germany, Italy 19)
 - 30 from US
 - 10 from rest of Asia (4 from Japan)
- ⇒ Clearly a Chinese project!

Project cost comparison

No cost available for FCC-ee at this moment.

 W. Chou
 CEPC Workshop, 11/8/2017
 5

On the table (1 RMB = $0.1 - 0.15 \in$)

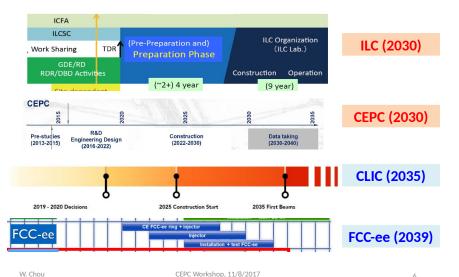
funding needs for carrying out CEPC design and R&D should be fully met by end of 2018

Money: The PAPS for RF R&D

Platform of Advanced Photon Source Technology R&D, Huairou Science Park, Huairou, Beijing

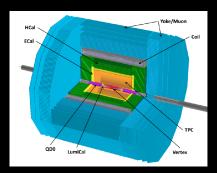
Construction: 2017 - 2019 Ground Breaking: May 31, 2017

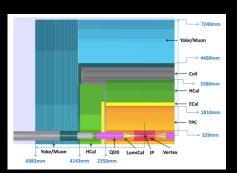
- •500M RMB funded by city of Beijing
- •Construction: May 2017 June 2020
- •Include RF system & cryogenic systems magnet technology, beam test, etc.



Time-line

- CEPC data-taking starts before the LHC program ends
- · Possibly con-current with the ILC program


Time-line comparison



11/31

Detectors: ILD - the baseline

CEPC baseline detector: ILD-like

Magnetic Field: 3 Tesla — changed from preCDR

- •Impact parameter resolution: less than 5 µm
- Flavor tagging •Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5} \, (GeV^{-1})$
- Jet energy resolution: $\sigma_F/E \sim 0.3/\sqrt{E}$

- BR(Higgs → µµ)
- W/Z dijet mass separation

Detectors: ILD - the updated baseline

Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV;
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV:

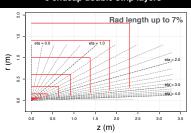
CEPC

November 6, 2017 16

13/31

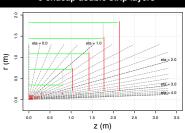
Alternative Detectors: SiD

Full silicon tracker concept


Session I: Weiming Yao CDR: Section 5.3

14 / 31

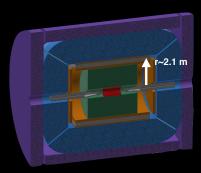
Replace TPC with additional silicon layers


CEPC-SID:

6 barrel double strip layers 5 endcap double strip layers

SIDB: SID optimized

5 barrel single strip layers 5 endcap double strip layers


Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

Alternative Detectors: Old friends ... (5th?)

Low magnetic field detector concept

Session I: Franco Bedeschi CDR: Section 3.3

Proposed by INFN, Italy colleagues

Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~0.8 X₀)

Beam pipe: radius 1.5 cm

Vertex: Similar to CEPC default

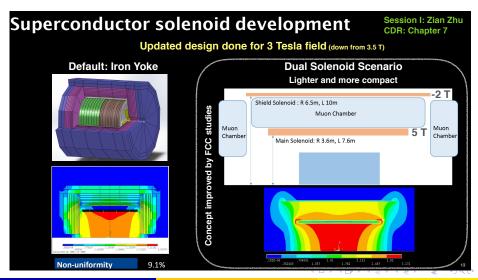
Drift chamber: 4 m long; Radius ~30-200 cm

Preshower: ~1 X₀

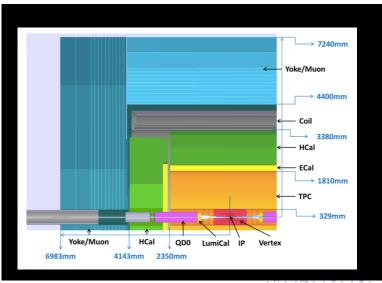
Dual-readout calorimeter: 2 m/8 λ_{int}

(yoke) muon chambers

Integrated into Conceptual Design Report


Dual readout calorimeter: Chapter 6

Talk: Session IV - Roberto Ferrari


Drift chamber: Chapter 5
Talk: Session II - Franco Gancagnolo

Muon detector (µRwell): Chapter 8
Talk: Session IV - Paolo Giacomelli

Alternative Detectors: ... twice ! (6th?)

Detectors: QD0!

Detectors: MDI

Session MDI: Chenghui Yu Interaction region: Machine Detector Interface CDR: Chapter 10 One of the most complicated issue in the CEPC detector design Updated baseline parameters: Head-on collision changed to crossing angle of 33 mrad Full partial double ring Focal length (L*) increased from 1.5 m to 2.2 m Solenoid field reduced from 3.5 T to 3.T 1000 R [mm] 800 600 LumiCal 400 Lumi unc: 1 x 10-3 200 Session MDI: Suen Hou CDR: Chapter 10 -200 (studies lead by Vinca LumiCal Compensating Solenoid and Academia Sinica) BeamPipe Cryostat 2000 4000 Z [mm] 1 * = 2.2 mField Strength Lenath Inner Radius

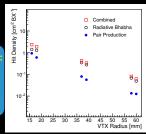
Detectors: Backgrounds

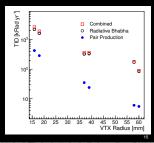
Interaction region: Machine Detector Interface

Session MDI: Hongbo Zhu CDR: Chapter 10

Machine induced backgrounds

- · Radiative Bhabha scattering
- · Beam-beam interactions
- · Synchrotron radiation
- · Beam-gas interactions

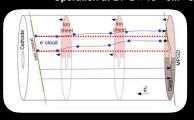

Studies for new configuration being finalized


Higgs operation (E_{cm} = 240 GeV)

Rates at the inner layer (16 mm):
Hit density: ~2.5 hits/cm²/BX

TID: 2.5 MRad/year NIEL: 10¹² 1MeV n_{eq}/cm²

(Safety factors of 10 applied)



Detectors: TPC - looks strangely familiar ...

Time Projection Chamber (TPC)

TPC detector concept

- · Allows for particle identification
- · Low material budget
- · 3 Tesla magnetic field -> reduces diffusion of drifting electrons
- Position resolution: ~100 μm in rφ
- Systematics precision (<20 μm internal)
- GEM and Micromegas as readout
- Problem: Ion Back Flow -> track distortion
 Operation at L > 2 x 10³⁴ cm⁻² s⁻¹?

4.7m

Session III: Huirong Qi CDR: Chapter 5

20 / 31

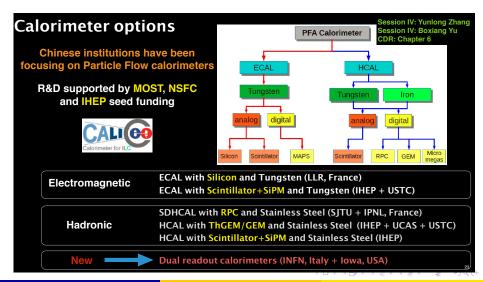
Manpower and activities

3.6m

- TPC detector R&D @IHEP (2016~2020)
 - Funding from MOST and NSFC (~3.5 Million RMB)
- Electronics R&D @Tsinghua (2016~2020)
- Funding from NSFC (~2.0 Million RMB)
- Inhabitation of IBF using graphene @Shandong Univ. (2016~2019)

Detectors: TPC Collaboration

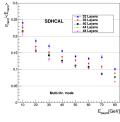
International cooperation

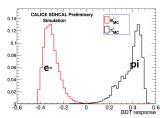


- □ CEA-Saclay IRFU group (FCPPL)
 - Three vidyo meetings with Prof. Aleksan Roy/ Prof. Yuanning/ Manqi and some related persons (2016~2017)
 - Exchange PhD students: Haiyun Wang participates Saclay's R&D six months in 2017~2018
 - Bulk-Micromegas detector assembled and IBF test
 - IBF test using the new Micromegas module with more 590 LPI

- □ LCTPC collaboration group (LCTPC)
 - Singed MOA and joined in LC-TPC collaboration @Dec. 14,2016
 - □ As coordinator in ions test and the new module design work package
 - Regular meeting bi-weeks
 - Plan to beam test in DESY with our hybrid detector module in 2018

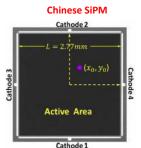
Detectors: Calorimeters - all options open


Detectors: CALICE


THU and SJTU joined the CALICE Collaboration

THU/SJTU/CALICE

- Collaborating with Imad Laktineh (IPNL) on SDHCAL R&D.
- We have a joint Ph.D student via CSC program (2years). CAN-059 about using BDT to improve pi/e/mu separation is under review process.
- SJTU will host the CALICE collaboration meeting on Sept. 19-21, 2018. https://agenda.linearcollider.org/event/7799/



Detectors: AHCal

CEPC-AHCAL Next step

- · ASCI chip readout research;
- Test Chinese (GNKD) plastic scintillator;
- · Test the Chinese EQR-SiPM;
- · Scintillator mega tiles test;

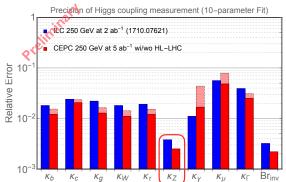
SW: Current framework

- Current CEPC software uses Marlin, adopted from ILC
- CEPC software group are built, including current CEPC software group, IHEPCC, SDU, SYSU, JINR.....to work on future CEPC software
- Consider uncertain official support of Marlin, future CEPC software framework are investigated
 - Several existing framework are studied
- Gaudi is preferred with wider community, possible long-term official support, more experts available in hand, keep improved with parallel computing
- International review meeting is in consideration for final decision of framework

	Marlin	Gaudi	ROOT	ART	SNIPER
User Interface	XML	Python, TXT	Root script	FHICL	Python
Community	ILC	Atlas, BES3, DYB,LHCb	Phenix, Alice	Mu2e, NOvA, LArSoft, LBNF	JUNO, LHAASO

SW: Current resources

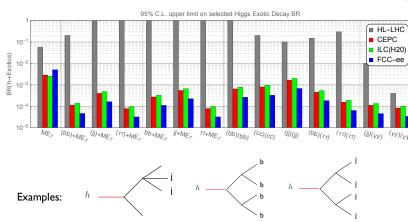
- Active Site: 6 from England, Taiwan, China Universities(4)
 - QMUL from England and IPAS from Taiwan plays a great role
 - Cloud technology used to share free resource from other experiments in IHEP
- Resource: ~2500 CPU cores, shared resources with other experiments
- Resource types include Cluster, Grid ,Cloud
- Network: 10Gb/s to USA and Europe, to TaiWan and China University
 - Joining LHCONE is in plan to future improve international network connection


CPU Cores CLOUD.IHEP-OPENSTACK.cn CLOUD.IHEP-OPENNEBULA.cn CLOUD.IHEP-CLOUD.cn CLOUD.IHEPCLOUD.cn CRID OMIL UK		
OPENSTACK.cn 96 CLOUD.IHEP- OPENNEBULA.cn 24 CLOUD.IHEPCLOUD.cn 200	Site Name	
OPENNEBULA.cn 24 CLOUD.IHEPCLOUD.cn 200		96
		24
CPID OMIII uk 1600	CLOUD.IHEPCLOUD.cn	200
GRID.QWOL.uk	GRID.QMUL.uk	1600
CLUSTER.IPAS.tw 500	CLUSTER.IPAS.tw	500
CLUSTER.SJTU.cn 100	CLUSTER.SJTU.cn	100
Total (Active) 2520	Total (Active)	2520

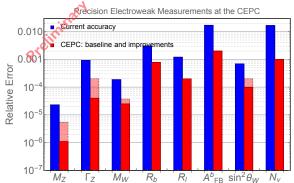
QMUL: Queen Mary University of London IPAS: Institute of Physics, Academia Sinica

Physics: Higgs

..... poor-man's ILC(250) @ H : Twice the lumi, but no polarisation. And short life-time (SppC!)


Zhen Liu, Jin Wang, Kaili Zhang

Physics: Exotic higgs decays


Higgs exotic decay

Zhen Liu, LTW, Hao Zhang

Physics: ... but a great Z&W factory!

Z-factory

Based on Giga-Z. Large improvement.
Systematic dominated

projection: Zhijun Liang

My Summary

- CEPC is quite similar to ILC@250 in
 - Cost
 - Physics potential
 - Time-line (It might seem optimistic, but remember that it is just a very big electron synchrotron - something one knows how to build!)
 - Both will upgrade after 10 years (Although only ILC will make an upgrade that makes sense ...)
- ⇒ Unlikely that both would be built ...
- We are already collaborating, via LCTPC and CALICE
- Most effort (and funding) is on the machine, and on CEPC, not SppC.
- Much less on detector development and SW ⇒ We would find our place in those fields.

All about it:

Progress report, along with the preCDR, is available at

http://cepc.ihep.ac.cn

CEPC CDR will be completed at the end of 2017

4 D > 4 A D > 4 E > 4 E > 9 Q P

14