ILD/ILC MDI/Integration/Siting

A dirty job, but someone has to do it...

Karsten Buesser FLC Retreat 04. December 2017

ILD Integration

ILD Technical Deliverables

- For the ILD 2018 document as proposed by Claude
- Update on external constraints:
 - L*, backgrounds, luminosity spectrum,...
 - Primary focus on 250 GeV
- Technological studies since DBD:
 - Latest prototype and beam test results
 - Overall detector structure incl. updated layouts and open options for non-resolved issues
 - Subdetector interfaces (ICD)
 - Mechanical structure studies: static and dynamic
 - Beam background studies update
 - Alignment/calibration procedures
- Detector Modelling:
 - Simulation description incl. hybrid options for calos, methods for BG overlays, anti-DID
 - Two detector models: small (CLIC-like) and large (DBD-like)
- Detector performance on various levels as function of model size and/or technology (hybrid simulations)
 - Response to individual particles
 - Global response incl. particle flow
 - Performance on few physics benchmarks
- Clearly, overlap with Analysis and Software groups' deliverables

Interface control document

Proposal of an Interface Control Document (ICD):

Purpose of this document is:

- To know and record technical details of each subdetector
- To understand the consequences at the interfaces (gap, fixations, weight,)
- Follow up of different progress

•

R. Poeschl H. Videau

One document by sub detector

Enter all technical details you know today (dimensions, weight, attachment points, center of gravity, positioning constraints, services, power consumption, thermal dissipation, integration specifications,)

Items may be missing (Please help actively to improve the document)

Each ICD will evolve during the phase of study.

They are not casted in stone yet

- ICD will become backbone of ILD Engineering Design study!!!
- Status will be monitored at ILD (Integration) meetings

Three documents

Document on ILD Conventions and rules

ILD conventions and rules

ILD conver	ntions and	rules	
	ILD		
epared by Signature	Accepted by		Signature
Roman Pöschl			
proved by Func	tion	Date	Signature
mmary			
	ument Change Reco	ord	
Edition Revision Date	Modified pages		Observations
0 1 21/10/16	all	Creation	2
Edition Revision Date			

Actual ICD

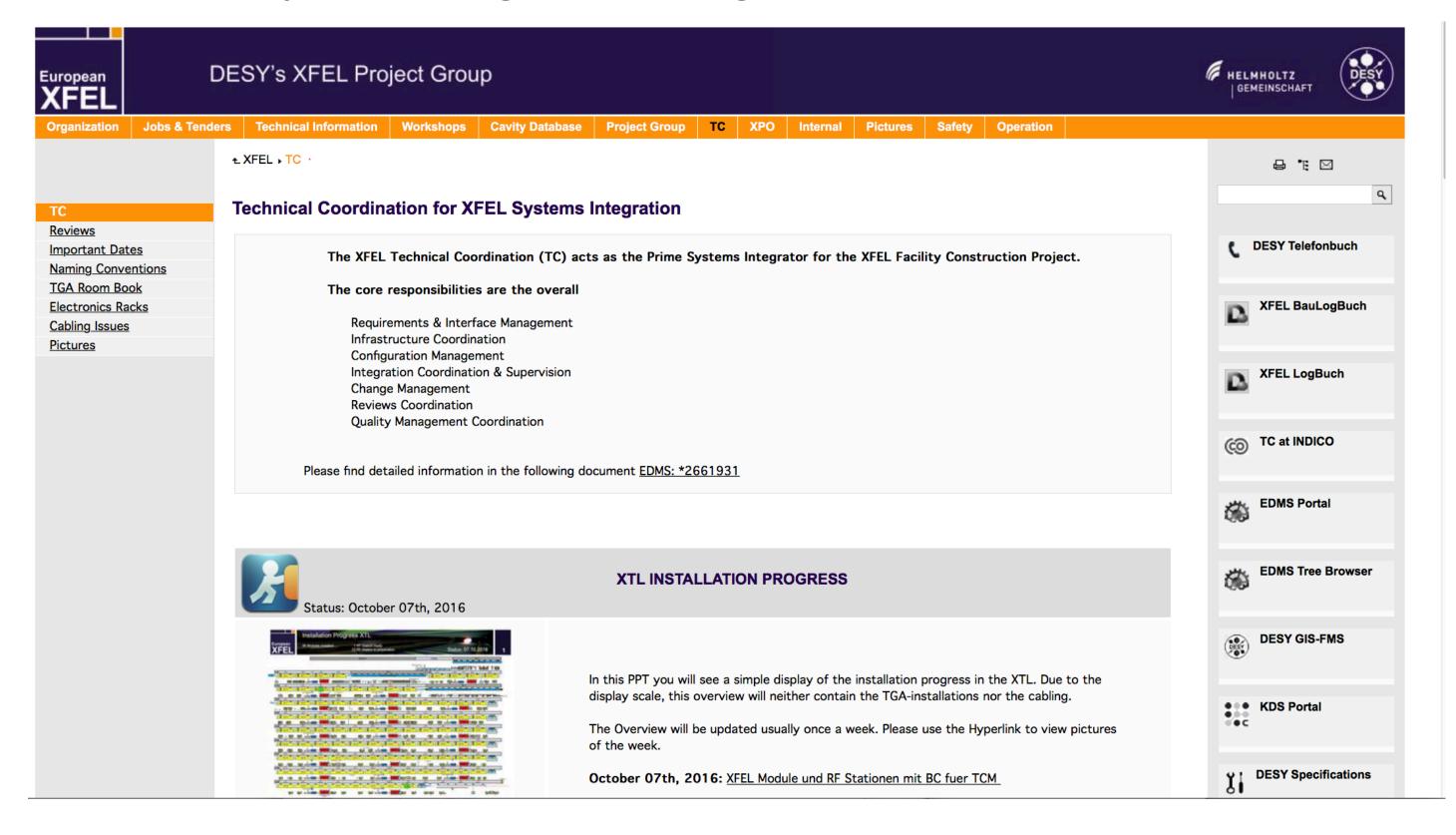
		o comerc	l Docume	nt rem	piate
	XXX	XXXXX (S	ub detect	or name	e)
Prepared by	y	Signature	Accepted by	y	Signature
Approved b	у	Function		Date	Signature
Summary					
Annexes					
		Docum	ent Change Recor	d	
Edition	Revision	Date !	Modified pages	O	servations
1	0				

Technical Design Document of subdetector

	Tecl	nnical De	esign Docu	Date: 22/8/16	Page : 1/34
			SiEcal		
Prepared by		Signature	Accepted by		Signature
Marc Anduz Henri Videa					
Approved by		Functi	on	Date	Signature
Annexes		Dogu	ment Change Rec	ord	
Edition	Revision	Date	Modified pages	1	Observations
0	1	7/10/16	all	Creation	
Distribution		See Distribut	ion list at the end o	of this docum	ent

Obligatory document: Author: Central Integration Group Obligatory document Author: Subdetector group

Optional document
(Highly recommended)
Author: Subdetector group
-> See talks by Henri and Marc


R. Poeschl

Interface Control Documents - Status

Subdetector	
VTX	discussions have started
SIT/FTD/ETD	discussions have started
TPC	fourth draft available
Si-ECAL	first draft available
Sc-ECAL	first draft available
A-HCAL	discussions have started
SD-HCAL	discussions have started
FCAL	discussions have started
Yoke/Muon	???
ILD Conventions/Rules	first draft available

ILD Work Breakdown Structure

- Work in progress together with IPP (Lars Hagge)
- Define work packages for ILD
- Make WBS available as EDMS tree browser
 - XFEL experience
- Could easily be integrated, e.g into ILD Confluence


```
XFEL Project (1311 / 4120)

    Project Management (27 / 679)

+ P-02 P-02
      ☐ WP-03 Acc Modules (42 / 186)
            ☐ ② Cryomodule Assembly (18 / 117)
                         CEA Final Work Instructions for Cryomodule Assembly
                   + CMAS (Cold Mass + Aligned String) integration at AL (3 / 21)
                   + String integration at RO (3 / 34)
                   + STR (Cavity String) integration at SA (3 / 21)
                   + VCMS (Vessel + Cold Mass + String) integration at CA (3 / 13)
                   ±  SM (XFEL Cryomodule) integration at CO (5 / 28)
            ±  © Cryomodule Components (19 / 41)
                   Development
                   Installation
            MC: Cryomodule Interconnection (1 / 0)
                   Order
                  Test
            ± SEL Cryomodule (1 / 27)
            ±  % XM-2: XFEL Cryomodule (0 / 1)
                   XM-3: XFEL Cryomodule
      + P-04 SC cavities (2 / 4)
      WP-05 Power Coupler (16 / 1)
      H WP-06 HOM Coupler (15 / 8)
      ±  @ WP-07 Tuner (9 / 12)
      WP-08 Cold Vacuum (6 / 0)

    WP-09 String Assembly (9 / 51)

      + P WP-11 Cold Magnets (4 / 1)
      WP-46 3rd Harmonic System (1 / 4)
WPG-2 Accelerator Sub-System (943 / 428)
WPG-3 Photon Beam System (7 / 2)
WPG-4 Controls & Operation (3 / 15)
WPG-5 Infrastructure (199 / 409)
WPG-6 Site & Buildings (2 / 2267)
```

ILD Work Breakdown Structure (Draft)

Work Package	Scope	Deliverables				
	Coordination of the ILD technical design from concepts to publication of a			Coordination of the SD-HCAL technical design in context of ILD from		
	Technical Design Report including simulations and alternatives.			concepts to publication of the TDR in the framework of the given		
1. Specifications and Parameters	Coordination, validation and communication of the boundary conditions.		8. SD-HCAL	specifications and parameters.		
		1.0 Physics Parameters			8.0 Specifications	
		1.1 Cross sections, Placeholders			8.1 3D Model	
		1.2 High-ranking Milestones			8.2 Interface Control Documents	
	Coordination of the VTX technical design in context of ILD from concepts			Coordination of the Coil technical design in context of ILD from concepts		
	to publication of the TDR in the framework of the given specifications and			to publication of the TDR in the framework of the given specifications and		
2. Vertex Detector	parameters.		9. Coil	parameters.		
		2.0 Specifications			9.0 Specifications	
		2.1 3D Model			9.1 3D Model	
		2.2 Interface Control Documents			9.2 Interface Control Documents	
	Coordination of the Intermediate Tracking technical design in context of			Coordination of the Yoke and Muon System technical design in context of		
	ILD from concepts to publication of the TDR in the framework of the given			ILD from concepts to publication of the TDR in the framework of the given		
3. Intermediate Tracking	specifications and parameters.		10. Yoke+Muon	specifications and parameters.		
J. Intermediate Tracking	specifications and parameters.	3.0 Specifications			10.1 Specifications	
		3.1 3D Model			10.1 3D Model	
		3.2 Interface Control Documents			10.1 02 Model	
	Coordination of the TPC technical design in context of ILD from concepts	3.2 Interface Control Documents			10.2 Interface Control Documents	
				Coordination of the site and building design in context of ILD and ILC from		
4. TPC	to publication of the TDR in the framework of the given specifications and		11. Site and Buildings	concepts to publication of the TDR.		
4. 1PC	parameters.	4.0 Spacifications	11. Site and buildings	concepts to publication of the TDN.	11.0 Specifications	
		4.0 Specifications			11.1 Plans/Models	
		4.1 3D Model		Coordination of the mechanical and electrical integration of ILD from	11.1 Flatis/ Models	
		4.2 Interface Control Documents	12. Integration	concepts to publication of the TDR.		
	Coordination of the Si-ECAL technical design in context of ILD from		12. Integration	concepts to publication of the TDN.	12 O Conventions and Pules	
	concepts to publication of the TDR in the framework of the given				12.0 Conventions and Rules	
5. Si-ECAL	specifications and parameters.	_	12 Caufiannation Managament		12.1 3D Model	
		5.0 Specifications	13. Configuration Management			
		5.1 3D Model				
		5.2 Interface Control Documents	14. Physics Simulation			
	Coordination of the Sc-ECAL technical design in context of ILD from				14.0 Performance Model	
	concepts to publication of the TDR in the framework of the given				14.1 Geant Model	
6. Sc-ECAL	specifications and parameters.		15. Project Management			
		6.0 Specifications			15.1. Planning	
		6.1 3D Model				15.1.0 Assembly
		6.2 Interface Control Documents				15.1.1 Time Plans
	Coordination of the A-HCAL technical design in context of ILD from				15.2 Costing	
	concepts to publication of the TDR in the framework of the given					
7. A-HCAL	specifications and parameters.		16. Technical Documentation	Compilation of all documents required by external recepients.		
		7.0 Specifications			16.0 TDR	
		7.1 3D Model			16.1 Technical Safety Concept	
		7.2 Interface Control Documents			16.2 Radiation Safety Concept	

ILD Integration Task Force

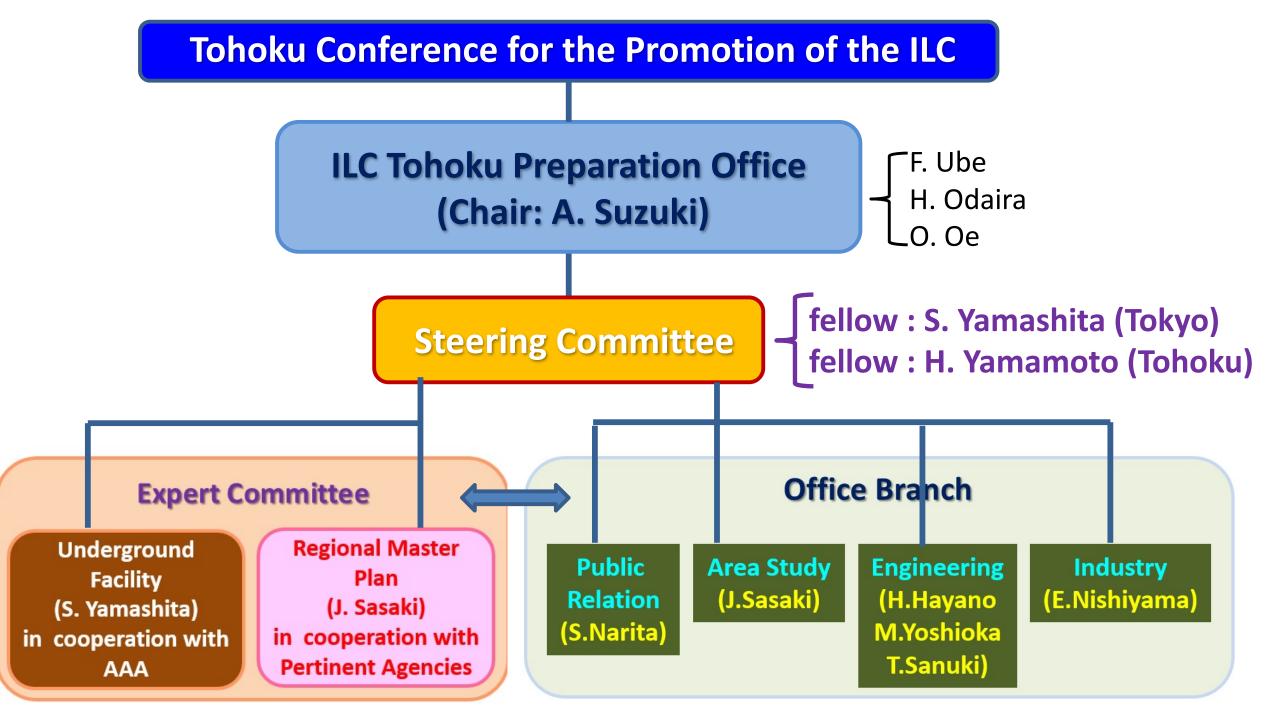
- Proposed by Claude
- Charge:
 - Foster production of Interface Control Documents
 - Define a coherent ILD detector within the experimental hall
 - To be documented in the ILD Technical Design Documentation and the ILD document by the end of 2018
- Face-to-face (open) meeting: one day, candidate days Jan 30/ Feb 1/ Feb 2 at LAL

Task	Physicists	Engineers
Central Design and Integration	Roman Poeschl, Yasuhiro Sugimoto, Claude Vallee, KB	Christian Bourgeois, Alexandre Gonnin
VTX	Auguste Besson	
FTD	Ivan Vila, Marcel Vos	David Moya, M.A. Villarejo Bermudez
TPC	Paul Colas	Volker Prahl
ECAL	Henri Videau	Marc Anduze
HCAL	Imad Laktineh, Felix Sefkow (Katja Krüger)	J-C. lanigro, (Karsten Gadow)
Yoke/Coil	Uwe Schneekloth	Richard Stromhagen
VFS	Sergej Schuwalow	
DAQ	Mattthew Wing	

FLC Input on Integration

- A lot of work ongoing within the subdetector collaborations
 - A-HCAL: Felix, Katja, Karsten G
 - Dynamic simulations: Felix, Martin Lemke (ZM)
 - TPC: Volker
 - Magnet/Yoke: Uwe, Richard
- General ILD integration work at FLC: Claude, KB, (Klaus), Lars Hagge (IPP)
 - badly needed: an integration engineer at DESY: CAD model integration, collaboration with engineers at LAL
- All defined milestones for ILD integration done before end of 2018
 - quite natural...
- If ILC comes, this effort needs to be ramped up significantly
 - DESY/FLC could really play the leading role for the ILD integration for a real TDR and beyond
- If ILC dies, the future of this work depends on the future of the ILD concept
 - If there is another application (CEPC?), we might continue on some level
 - If no foreseeable future of ILD, then this task will also go into hibernation

ILC Site-specific Design


Tohoku Activities

- The Tohoku ILC Planning Office (Suzuki et al.) is currently in the driver's seat
- Their engineering group has taken over the site-dependent design activities
 - some support from KEK (H. Hayano)
- This seems to be mostly de-coupled from LCC
 - change control does not work anymore
- It is hard to establish working relations with the local experts
- Need to find ways to make sure that ILD requirements are not forgotten

4. Tohoku ILC Planning Office (2016)

Mission: June 14th, 2016

to complete key-issues required in local districts before the ILC construction

T. Onuki, T. Sarukawa, H. Musya, Y. Shiraiwa, T. Yajima, Y. Kamata, I. Kumagai, Y. Fujita, K. Shige, A. Wayama, K. Kon, Y. Takano, K. Norita, Y. Abe, H. Ohuchi, T. Shiraiwa, T. Takahashi, Y. Inomata, Y. Ejiri, Y. Kumazawa

Site-specific Design Evolution

Hitoshi Hayano:

- Site-specific design deviates from TDR
 - to be expected
 - but what about Change Control?

Changes	Different points in	RED TDR Option C	Site-specific Option C
cost base	•	before 2011-earthquake	2014 for civil, 2016 for others
CFS-Civil	tunnel	9.5m width & 1.5m shield wall for ML, same to TDR for BDS, DR on-site construction of shield wall	9.5m width & 1.5m shield wall for ML, same to TDR for BDS, DR pre-cast shield wall & fabrication on site
	access tunnel	1km for 5 access tunnel assumed	site-dependent 5 access tunnel, total length=4876m, same cross-section shape to TDR
	drain tunnel	no cost cosideration	1 drain tunnel with 0.13% & 4335m to the river. natural drain for emergency (for long time AC down)
	underground access hall	180m x 20m x 14m cavern for 4 access halls	new design: separate 4 caverns for 5 access halls
	detector hall	TDR updated design 108m x 25m x 42m φ18 x 70m: 1 vertical shaft	Detector hall combined with-Utility-hall 133 x 25 x 42m φ18 x 75m: 1 vertical shaft
	Utility hall	TDR updated design 80m x 20m x 10m: 1 cavern ф10 x 98m: 1 vertical shaft	included to detector hall 2 new 3m-width bypass tunnel are added φ10 x 75m: 1 vertical shaft
	surface access station	5000m ² x 4 stations, with land-dvlp, w-bldg	18000m ² x 5 stations, with land-dvlp, w/o-bldg
	surface IP	20000m² x 1, land-dvlp, w-bldg	80000m ² x 1, with land-dvlp, w/o-bldg
			new surface building design, costed by MEXT rule
	manage engineering	+5.5%	including in the estimation
CFS-others	Electric	275kV recv, 10MW emergency generator are included. Wire is excluded.	154kV recv & 10MW co-gneration, excluded (later, pay in operation)
	Mechanical (water, air)	cooling water for accelerator: ⊿T=10C, whole-vol air excg, tunnel temp=29C	water-line to ILC, excluded(later, pay in operation) cooling water for accelerator: △T=30C, 1/3-vol air excg, tunnel temp= 18-22C
	handling, safty, survey	as TDR	TEL & Crane are excluded (lease), accelerator handling & survey are excluded
	manage engineering	+5.5%	including in the estimation

IR Surface Area

154kV receive surface design Hitoshi Hayano: 154kV to 66kV Trans IP area 78,500m² 1 66kV co-generation to be further discussed specially with LCC-MDI. Water chiller & pumps Air intake/exhaust LNG for co-generation research building modular design He arrangement could compressor & tanks be different in reality IP detector assembly building ILD&SiD detector preparation building

computing building

©Rey.Hori/KEK

9

IR Surface Area

154kV receive surface design Hitoshi Hayano: 154kV to 66kV Trans IP area 78,500m² 1 66kV co-generation to be further discussed specially with LCC-MDI. Water chiller & pumps Air intake/exhaust LNG for co-generation research building modular design He arrangement could compressor & tanks be different in reality IP detector assembly building ILD&SiD detector preparation building

computing building

©Rey.Hori/KEK

9

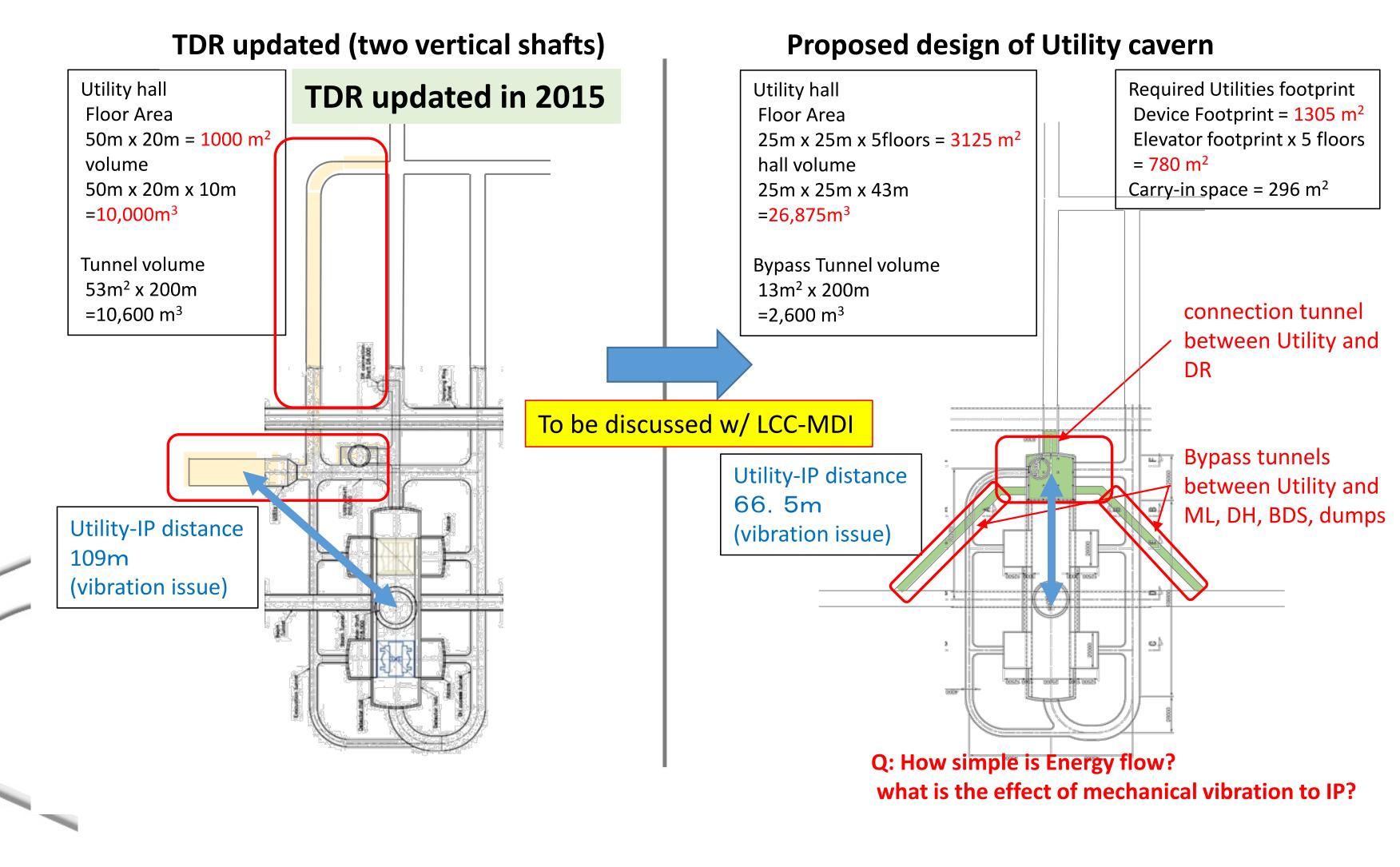
IR Surface Area

154kV receive surface design Hitoshi Hayano: 154kV to 66kV Trans IP area 78,500m² 1 66kV co-generation to be further discussed specially with LCC-MDI. Water chiller & pumps Air intake/exhaust LNG Onsen (as proposed by MS) research building modular design He arrangement could compressor & tanks be different in reality IP detector assembly building ILD&SiD detector preparation building

computing building

©Rey.Hori/KEK

9

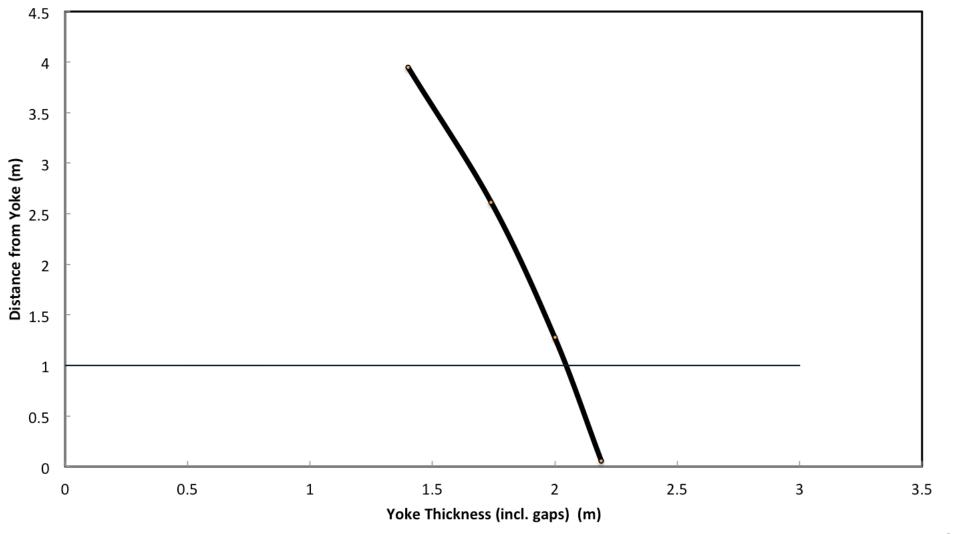

Conflicts (?)

Hitoshi Hayano:

 Space for detector utilities not sufficient

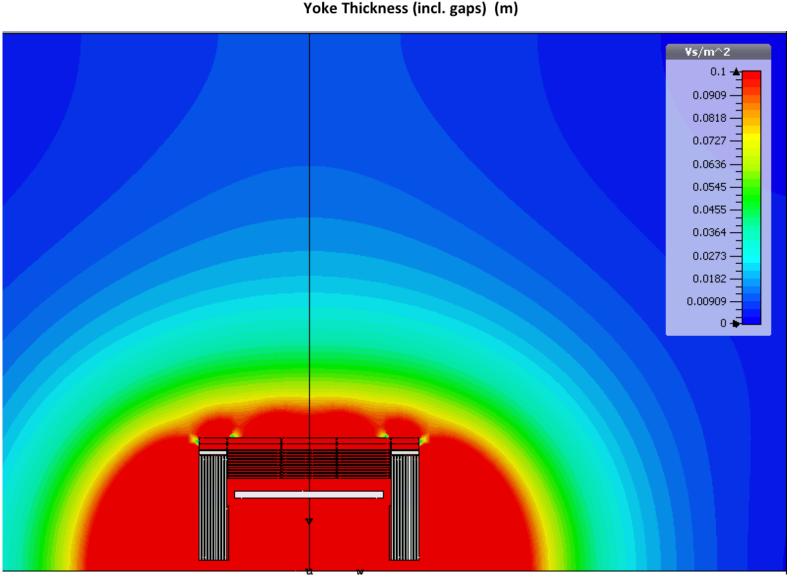
Proposal of Utility Cavern Movement at Interaction Point

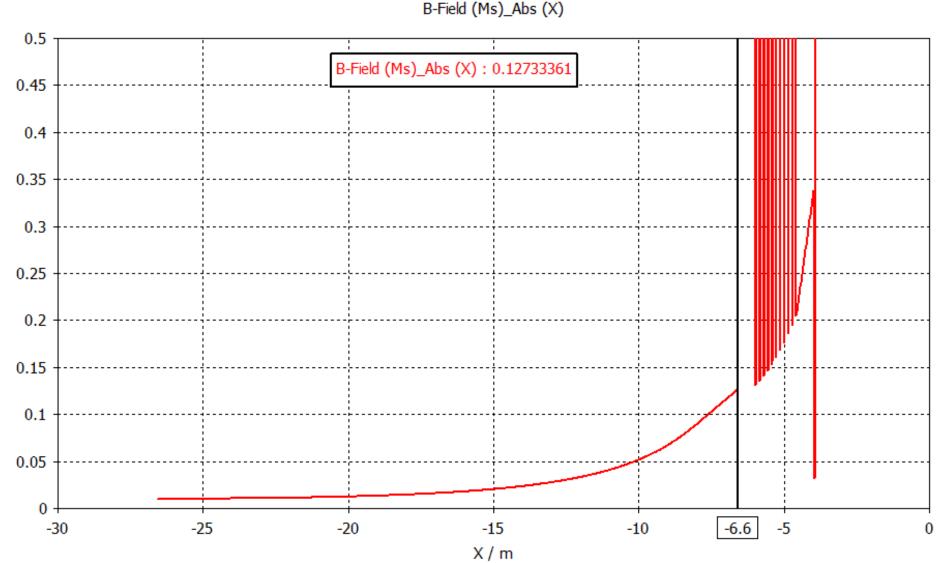
Considering power flow, water flow and air flow between utility shaft and the devices,



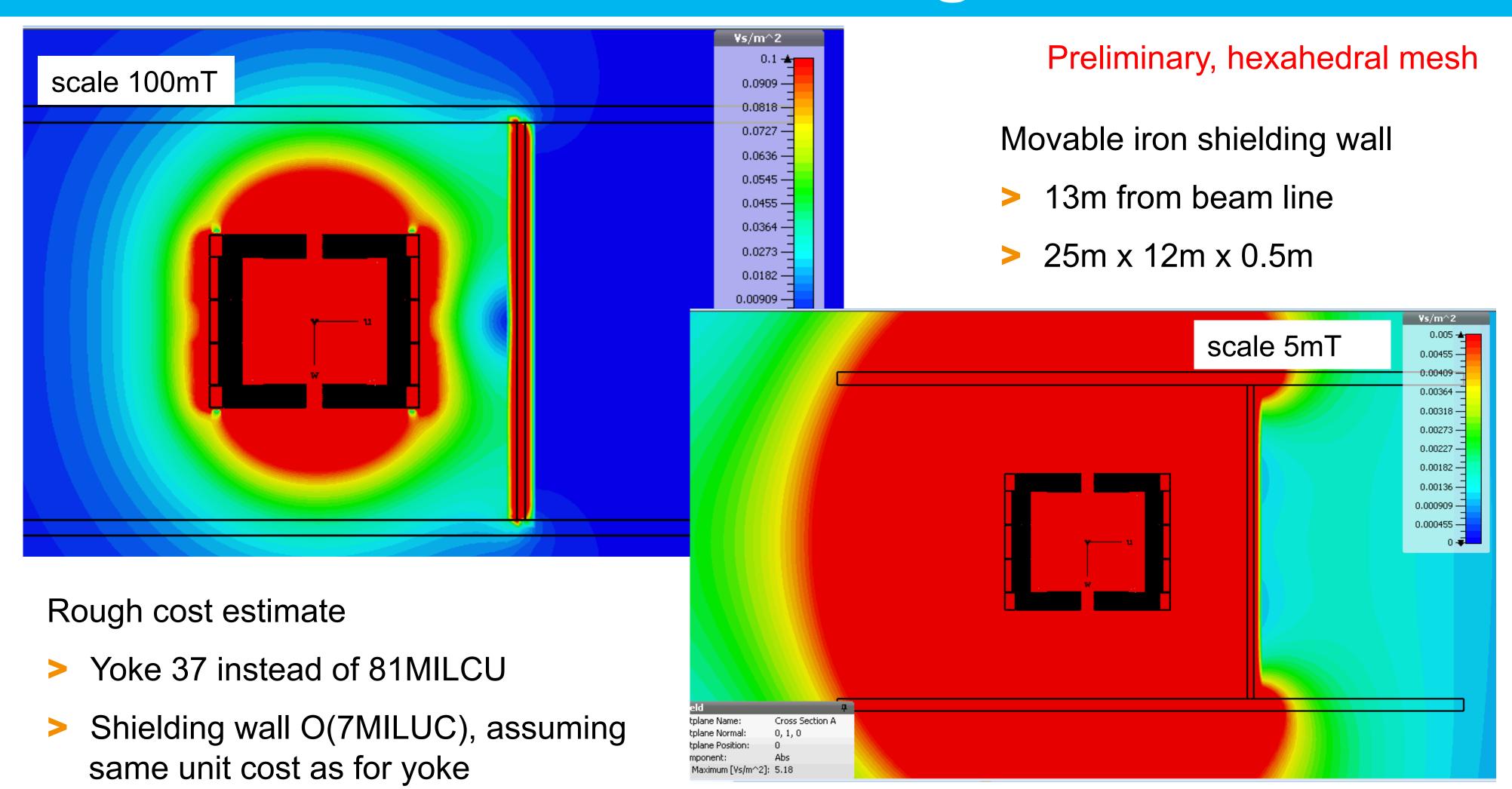
%Rey.Hori/KEK

Reducing Yoke Thickness


• U. Schneekloth:



Yoke size and thickness reduced


- B 0.1mT at 1m from yoke for
 - $R_{out} = 6.6m$ (instead of 7.76m)
 - iron thickness 2.04m including gaps

Reduced Yoke — Shielding Wall

U. Schneekloth:

Could reduce hall height by approx. 1m

(Should be cheaper, but need moving platform)

May need some concrete shielding

Mini-Workshops on ILC Infrastructure for Detectors

- Spin-off of the LCCPDeb Infrastructure Working Group (S. Yamada)
- Forum to bring together experiments, machine experts, CFS group and local experts
 - Status of local planning
 - Detector requirements on infrastructure
 - Access and transportation
 - IP Campus and central lab design
 - Magnets (Solenoids, Anti-DID)
 - Cryogenics
 - •
- Sponsored by E-JADE
- Five workshops so far:
 - 08/09 2015
 - •03/2016
 - 09/2016
 - 05/2017
 - 09/2017
- About 15-20 regular participants
- Next: 23.02.2018, right after ILD workshop

Development Exchange Programme

FLC Input on Infrastructures

- ILD requirements (transportation, facilities, etc.)
- Estimates on number of people at IP and central campus during assembly, operations, maintenance periods
- Requirements for central lab infrastructure (DESY experience)
- Requirements for IP infrastructure and detector/machine assembly (HERA experience)
- Studies on ILD yoke and magnet
- Requirements for/from sub-detectors (services, assembly)
- Earthquake protection
- Regular FLC (and friends) participants:
 - Felix, Klaus, Richard, Thomas, Uwe, KB
- SiD is not able to make significant impact, all requirements are driven by ILD
- FLC is recognised as centre of competence for these questions!
 - Prominent example: the vertical shaft access was the result of an FLC initiative!
- It is natural to continue our involvement until end of 2018.
 - co-incides also with end of E-JADE

Summary

Summary and Outlook

- All current work is nicely focused towards a decision point in 2018
- ILD integration work has two main goals
 - Technical design documentation on EDMS WBS
 - Input for ILD documents to be written by end of 2018
- List of technical deliverables is being followed up
- Infrastructure work continues until end of 2018 when also E-JADE comes to an end
 - whatever follows, depends on the future of the ILC
- If there is no positive sign from Japan, this part of the work will surely stop
 - Document as much as possible and keep experience and expertise for other future projects
 - I see no large future collider project where we could contribute to at a similar level at this time
 - CLIC/FCC are in good CERN hands, CEPC organised by China (maybe we could help there when it gets more realistic)
- If ILC does not come, any integration/infrastructure work would have to focus on subdetector designs
 - conceptual studies, integration for dedicated problems, for generic future collider projects
- Or re-focus on other projects, e.g. IAXO, MADMAX, ...
- If ILC comes, times will get interesting...
 - MDI/Infrastructure: International ILC lab has to take over organisation focus would naturally shift towards local experts
 - ILD integration would be a major work package for a future TDR and beyond DESY could be a major player