

Karin Daum, <u>Oleksandr Zenaiev</u>, Achim Geiser (for the draft) (DESY)

Analysis webpage: https://www.desy.de/h1zeus/heavy-flavour/cbcomb2017prel H1ZEUS plenary, 23.11.2017

- Analysis is done
- Paper draft v0.75 (==v0.5) was circulated among the analysis team, EB and H1ZEUS management on 16 Nov
- Circulation of v1 in H1ZEUS: 23 Nov 8 Dec
- 1st EB: 13 Dec 2017
- aim to submit paper by QCD Moriond (17 Mar 2018)

1 2 3	DESY 1X-YYYY ISSN 0418-9833 November 22, 2017 Draft version L0
4 5 6	Combination and QCD analysis of beauty and charm production cross section measurements in deep inelastic <i>ep</i> scattering at HERA
7	The H1 and ZEUS Collaborations
	Margaret
	2020.004
	Measurements of open beauty and charm production cross sections in deep inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross
10	sections for beauty and charm production are obtained in the kinematic range of photon
12	virtuality $2.5 \le Q^2 \le 2000 \text{ GeV}^2$ and Bjorken scaling variable $3 \times 10^{-5} \le x_{Bj} \le 5 \times 10^{-2}$. The combination method eccentric for the combining of the definition of the definition of the second eccentric combined and eccentric combined
13 14	certainties among the different data sets. The combined data are compared to perturbative
15	QCD predictions and used together with the combined inclusive deep inelastic scattering
16	cross sections from HERA in a next-to-leading order QCD analysis. The running charm and beautic quark manage are determined as as $(w_{\mu}) = 1.200^{+0.046} (erg)^{+0.062} (mod)^{+0.007} (next)$
18	GeV and $m_b(m_b) = 4.049^{-0.039}_{-0.039}(\text{exp})^{-0.033}_{-0.039}(\text{part})^{-0.034}_{-0.031}(\text{part})$ GeV and $m_b(m_b) = 4.049^{-0.039}_{-0.039}(\text{part})^{-0.033}_{-0.039}(\text{part})^{-0.031}_{-0.031}(\text{part})$

Introduction

Why combining data?

- Combined data expected to have ultimate precision
- Easy to use: one dataset, especially if available in open-source package
- Consistency is tested in the combination procedure

Why combining charm+beauty simultaneously?

- We have combined large ZEUS+H1 charm subset [DESY-12-172]: well established procedure, reference/starting point
- DESY-12-172: ≈ 170 citations, extensively used by most modern PDF groups, referred to as "unique data for tests of GMVFNS", as an arbiter of the quality of the description
- A number of beauty measurements by H1 and ZEUS are less "popular": less easy to be used in a quantitative analysis
- Most of beauty measurements done together with charm: accounting for improvement for charm cross sections will automatically improve beauty, consistent combination of c+b will deliver ultimately precise results which can be consistently used together

Combination procedure (same as for preliminary)

- Take measured visible x-section $\sigma_{\rm vis}$ and extrapolate to full phase space $\sigma_{\rm red}$ using consistent NLO setup: $\sigma_{\rm red} = \sigma_{\rm vis} \frac{\sigma_{\rm red}^{\rm NLO}}{\sigma_{\rm NLO}^{\rm NLO}}$ [HVQDIS]
- Combine $\sigma_{\rm red}$ accounting for bin-to-bin correlations [HERAverager]

NLO setup for extrapolation as in [DESY-12-172]

- pole masses $m_c = 1.5 \pm 0.15$ GeV, $m_b = 4.5 \pm 0.25$ GeV consistent with extracted from data: $m_c = 1.43 \pm 0.04$ GeV, $m_b = 4.35 \pm 0.11$ GeV and consistent with PDG: $m_c = 1.67 \pm 0.07$ GeV, $m_b = 4.78 \pm 0.06$ GeV
- $\mu_R = \mu_F = \sqrt{Q^2 + 4m_Q^2}$, varied simultaneously by factor 2

•
$$\alpha_s^{n_f=3}(M_Z) = 0.105 \pm 0.002 \ (\alpha_s^{n_f=5}(M_Z) = 0.116 \pm 0.002)$$

- HERAPDF1.0 FFNS, $n_f = 3$, assign 2% uncor. unc. (checked vs HERAPDF2.0: see backup)
- c fragmentation: Kartvelishvili frag. function parametrised as step function with k_T kink (H1, ZEUS meas. [DESY-08-080, DESY-08-209])
- *b* fragmentation: Peterson $\epsilon_b = 0.0035 \pm 0.0020$ [NP B565 (2000) 245]
- charm fragmentation fractions [EPJ C76 (2016) 397]
- branching ratios PDG2016
- hadronisation effects for data with jets in the final state via corrections from orig. papers

Combination procedure and input measurements

$$\chi^{2}_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{e} \left[\sum_{i} \frac{\left(m^{i} - \sum_{j} \gamma^{j, e}_{j} m^{i} b_{j} - \mu^{i, e} \right)^{2}}{\left(\delta_{i, e, stat} \mu^{i, e} \right)^{2} + \left(\delta_{i, e, uncorr} m^{i} \right)^{2}} \right] + \sum_{j} b_{j}^{2}$$

Data set	Tagging	Q^2 range	N_{c}	L	\sqrt{s}	N_b	Systematics	Extrapolation
		[GeV ²]		$[pb^{-1}]$	[GeV]			
1 H1 VTX DESY-09-096 + b	νтх	5 - 2000	29	245	318	12	DESY-12-172	DESY-12-172 ¹
2 H1 D* H-I DESY-06-240	D^{*+}	2 - 100	17	47	318		DESY-12-172	DESY-12-172
3 H1 D^* H-II (med. Q^2) DESY-11-066	D^{*+}	5 - 100	25	348	318		DESY-12-172	DESY-12-172
4 H1 D^* H-II (high Q^2) DESY-09-165	D^{*+}	100 - 1000	6	351	318		DESY-12-172	DESY-12-172
5 ZEUS D* 96-97 DESY-99-101	D^{*+}	1 - 200	21	37	300		DESY-12-172	DESY-12-172
6 ZEUS D* 98-00 DESY-03-115	D^{*+}	1.5 - 1000	31	82	318		DESY-12-172	DESY-12-172
7 ZEUS D^0 2005 DESY-08-201	D^0	5 - 1000	9	134	318		DESY-12-172	DESY-12-172
8 ZEUS µ 2005 DESY-09-056 + b	μ	20 - 10000	8	126	318	8	DESY-12-172	DESY-12-172
9 ZEUS D ⁺ H-II DESY-13-028	D^+	5 - 1000	14	354	318		new	new
10 ZEUS D*+ HERA-II DESY-13-054	D^*	5 - 1000	31	363	318		new	new
11 ZEUS VTX H-II DESY-14-083 + b	νтх	5 - 1000	18	354	318	17	in the paper	in the paper
12 ZEUS e H-II DESY-11-005 (b only)	e	10 - 1000		363	318	9	new	new
13 ZEUS $\mu + ext{jet}$ H-I DESY-10-047 (b only)	μ	2 - 3000		114	318	11	new	new

• Same method as for previous H1ZEUS data combinations [HERAverager]

- Q^2-x grid for charm as in DESY-12-172; for beauty only subset of points
- Correlations taken into account: systematics, statistical *c*-*b* correlations and extrapolation (details available in backup)

Combination and QCD analysis of beauty and charm data

Results: combined data

- NEW combination: $\chi^2 / \text{ndf} = 149 / 187 [+90 / 93]$
- H1ZEUS charm combination: $\chi^2/ndf = 59/94$ (without D^+ 2005)
- Adding only new charm: $\chi^2/ndf = 120/157 \ [+61/63]$
- Adding only beauty: $\chi^2/{\rm ndf}{=}\,84/124~[+25/30]$

Good consistency!

"Partial" χ^2 of newly included data sets:

ZEUS $D^+ c$	+12/14	H1 vtx b	+8/10
ZEUS $D^* c$	+29/31	ZEUS mu b	+2.9/6
ZEUS VTX c	+22/18	ZEUS el b	+3.3/7
ZEUS VTX b	+14/14	ZEUS mu b HERA-I	+18/10

Correlated uncertainties: all shifts within 1.4σ

Combined data: pull

Combined data: charm

K. Daum, A. Geiser, O. Zenaiev Combination and QCD analysis of beauty and charm data

Combined data: beauty

K. Daum, A. Geiser, O. Zenaiev Combination and QCD analysis of beauty and charm data

Combined data: charm, beauty $Q^2 = 32$ GeV²

Combined data: charm compared to HERA2012

- Consistent with HERA2012 [DESY-12-172], better overall precision
- Marginal improvement at low and very high Q^2 , best at medium Q^2
- Very few points: expanded uncertainties due to removed ZEUS D+ 2005 data set
- Some other points: significant uncor. unc. \rightarrow corr. (correlation with beauty)

Outline:

- main focus on FFNS and HERAPDF
- other FFNS PDFs: ABM, including approximate NNLO
- VFNS:
 - RT OPT: default HF scheme used in HERAPDF
 - FONLL C NNPDF3.1 with and w/out small x resummation: recent calculations aiming to improve description at low x_{Bj} and low Q^2
- summary table with all χ^2 and p-values

Combined data vs FFNS theory: charm

Theory settings:

- * NLO FFNS, running HF masses: $m_c(m_c) = 1.27 \pm 0.03$ GeV $m_b(m_b) = 4.18 \pm 0.03$ GeV
- * $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$ (simultaneously varied by factor 2)
- for HERAPDF2.0 FF3A, EIG only in unc. band
- * ABM09 provided by authors for HERA 2012 charm paper

Reasonable overall description, but tension in x slope at $7 < Q^2 < 32 \ {\rm GeV}^2$ where data are most precise

Combined data vs FFNS theory: charm

Theory settings:

 NLO FFNS, running HF masses:

 $m_c(m_c) = 1.27 \pm 0.03 \text{ GeV}$ $m_b(m_b) = 4.18 \pm 0.03 \text{ GeV}$

*
$$\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$$

(simultaneously varied by factor 2)

* for HERAPDF2.0 FF3A, EIG only in unc. band

Reasonable overall description, but tension in x slope at $7 < Q^2 < 32 \ {\rm GeV}^2$ where data are most precise:

 becomes worser with appr. NNLO and latest PDFs

Theory settings:

* NLO FFNS, running HF masses:

 $\begin{array}{l} m_c(m_c) = 1.27 \pm 0.03 \,\, {\rm GeV} \\ m_b(m_b) = 4.18 \pm 0.03 \,\, {\rm GeV} \end{array}$

*
$$\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$$

(simultaneously varied by
factor 2)

 for HERAPDF2.0 FF3A, EIG only in unc. band

Good overall description

Theory settings:

* NLO FFNS, running HF masses:

 $m_c(m_c) = 1.27 \pm 0.03 \text{ GeV}$ $m_b(m_b) = 4.18 \pm 0.03 \text{ GeV}$

- * $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$ (simultaneously varied by factor 2)
- for HERAPDF2.0 FF3A, EIG only in unc. band

Good overall description

Combined data vs VFNS theory: RT OPT, charm

VFNS:

- ^k HERAPDF2.0 RT OPT (NLO and appr. NNLO): similar to FF3A, except lowest Q^2
- * NNPDF predictions provided by authors with recommendation not to use 1st Q^2 bin (avail. in backup, also with PDF unc.)
- * NNPDF FONLL C (NNLO for massless, NLO for massive terms): worser data description
- * NNPDF FONLL C with small × resummation: does not improve description in whole phase space
- * however, both NNPDF pred. provide improved description of x slope

Combined data vs VFNS theory: RT OPT, beauty

HERAPDF2.0 RT OPT:

- * HERAPDF2.0 RT OPT: similar to FF3A, except lowest Q²
- small differences between NLO and appr. NNLO, except lowest Q²

Good overall descriptions

Combined data vs VFNS theory: FONLL C, charm

NNPDF3.1 FONLL C:

- NNPDF predictions provided by authors with recommendation not to use 1st Q² bin
- * better description of x_{Bj} shape
- * NNPDF FONLL C (NNLO for massless, NLO for massive terms): worser data description
- NNPDF FONLL C with small x resummation: does not improve description in whole phase space

Combined data vs theory: χ^2

Dataset	PDF	$\chi^2~[p ext{-value}]$	χ^2 with PDF unc.
	HERAPDF20 NLO FF3A	59 [0.23]	59
HERA 2012 a	ABKM09	59 [0.23]	-
	abm11_3n_nlo	62 [0.16]	62
	ABMP16_3_nnlo	70 [0.05]	69
	HERAPDF20_NLO_EIG (RT OPT)	71 [0.04]	70
$(N_{dat} = 52)$	HERAPDF20_NNLO_EIG (RT OPT)	66 [0.09]	65
[NNPDF31sx_nnlo_as_0118 (FONLL-C)	$106 [1.5 \cdot 10^{-6}]$	
$(N_{dat} = 47)$	NNPDF31sx_nnlonllx_as_0118 (FONLL-C)	71 [0.013]	-
	HERAPDF20_NLO_FF3A	86 [0.002]	85
New combined a	ABKM09	82 [0.005]	-
New combined c	abm11_3n_nlo	$92 \ [0.0005]$	91
	ABMP16_3_nnlo	$109 \ [6 \cdot 10^{-6}]$	106
	HERAPDF20_NLO_EIG (RT OPT)	99 $[9 \cdot 10^{-5}]$	98
$(N_{dat} = 52)$	HERAPDF20_NNLO_EIG (RT OPT)	$102 [4 \cdot 10^{-5}]$	99
	NNPDF31sx_nnlo_as_0118 (FONLL-C)	$140 [1.5 \cdot 10^{-11}]$	
$(N_{dat} = 47)$	NNPDF31sx_nnlonllx_as_0118 (FONLL-C)	$114 [5 \cdot 10^{-7}]$	-
	HERAPDF20_NLO_FF3A	33 [0.20]	33
New combined b	abm11_3n_nlo	34 [0.17]	34
$(N_{dat} = 27)$	ABMP16_3_nnlo	41 [0.04]	41
	HERAPDF20_NLO_EIG (RT OPT)	33 [0.20]	33
	HERAPDF20_NNLO_EIG (RT OPT)	45 [0.016]	45

20/34

Combination and QCD analysis of beauty and charm data

QCD analysis settings

Objective: extract HQ masses (not providing PDFs in this paper)

Setup follows HERAPDF2.0 FF, using running HQ mass definition:

- xFitter-1.2.0
- Input data:
 - HERA $e^\pm p$ inclusive data, $Q^2_{\rm min} > 3.5~{\rm GeV}^2~{\rm [1506.06042]}$
 - $\bullet\,$ new HERA c and b combined
- FFNS $n_f = 3$ ('FF ABM RUNM'), $O(\alpha_s(F_L)) = O(\alpha_s(F_2))$
- $\alpha_s^{n_f=3}(M_Z) = 0.106$
- free $m_c(m_c)$, $m_b(m_b)$
- DGLAP NLO [QCDNUM]
- PDF parametrisation: 14p HERAPDF at $\mu_{f0}^2 = 1.9 \text{ GeV}^2$, $f_s = 0.4$:

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$$
Additional constrains:

$$\begin{aligned} A_{\bar{U}} &= A_{\bar{D}} (1-f_s), \ B_{\bar{U}} &= B_{\bar{D}}, \ C'_g &= 25 \\ \int_0^1 [\sum_i (q_i(x) + \bar{q}_i(x)) + g(x)] x dx &= 1 \\ \int_0^1 [u(x) - \bar{u}(x)] dx &= 2, \\ \int_0^1 [d(x) - \bar{d}(x)] dx &= 1 \end{aligned}$$

• fit $(\Delta\chi^2 = 1)$, model (scales, α_s , f_s , Q^2_{\min}) and par. $(\mu_{f0}, E_{uv} = 0)$ unc.

Dataset (uncor. χ^2 only)	DIS free m	DIS PDG m	DIS+c+b free m	DIS+c+b PDG m
HERA1+2 CCep HERA1+2 CCem HERA1+2 NCem HERA1+2 NCep 820 HERA1+2 NCep 920 HERA1+2 NCep 460 HERA1+2 NCep 575 HERA c HERA b	49 / 39 50 / 42 225 / 159 65 / 70 415 / 377 223 / 204 219 / 254	55 / 39 50 / 42 221 / 159 66 / 70 420 / 377 221 / 204 217 / 254	54 / 39 50 / 42 221 / 159 65 / 70 418 / 377 221 / 204 217 / 254 50 / 52 17 / 27	55 / 39 50 / 42 221 / 159 65 / 70 419 / 377 220 / 204 217 / 254 49 / 52 19 / 27
Correlated χ^2 Log penalty χ^2	71 -12	75 - 6	125 -4	$128 \\ -6$
Total χ^2 / dof	1304 / 1129	1319 / 1131	1435 / 1208	1437 / 1210

- DIS PDG masses \approx HERAPDF2.0 FF3A
- DIS+c+b free masses: nominal fit in this paper

Fitted PDFs

23/34

K. Daum, A. Geiser, O. Zenaiev

Combination and QCD analysis of beauty and charm data

Data to theory comparison in the fit

- Observed almost no impact of HF data on PDFs, except constraining HQ masses
- Theory predictions from the fit are consistent with HERAPDF2.0

Data to theory comparison in the fit

- Observed almost no impact of HF data on PDFs, except constraining HQ masses
- Theory predictions from the fit are consistent with HERAPDF2.0 (constant offsets are explained by changes in the fitted mass values which are $\approx \pm 1\sigma$ of PDG values)

Fit results

Variation	DIS			DIS + c + b			
Variation	χ^2/dof	$m_c(m_c)$ [MeV]	$m_b(m_b)$ [MeV]	χ^2/dof	$m_c(m_c)$ [MeV]	$m_b(m_b)$ [MeV]	
Nominal	1304/1129	1798^{+144}_{-134}	8450^{+2282}_{-1812}	1435/1208	1290^{+46}_{-41}	4049^{+104}_{-109}	
$\mu \times 2$	1307	1752 [-46]	7794 [-656]	1430	1320 [+30]	4017 [-32]	
$\mu \times 0.5$	1305	1804 [+6]	8747 [+297]	1435	1350 [+60]	4139 [+90]	
$\alpha_s = 0.1075$	1304	1804 [+6]	8720 [+270]	1437	1276 [-14]	4051 [+2]	
$\alpha_s = 0.1045$	1305	1780 [-28]	8041 [-409]	1434	1301 [+11]	4044 [-5]	
$f_s = 0.50$	1304	1797 [-1]	8375 [-75]	1434	1287 [-3]	4048 [-1]	
$f_s = 0.30$	1305	1798 [+0]	8474 [+24]	1436	1294 [+4]	4050 [+1]	
$Q_{\min}^2 = 5.0 \text{ GeV}^2$	1237/1087	1932 [+134]	8300 [-150]	1372/1166	1289 [-1]	4044 [-5]	
$Q_{\min}^2 = 2.5 \text{ GeV}^2$	1346/1152	1798 [-0]	8509 [+49]	1476/1231	1297 [+7]	4056 [+7]	
$\mu_{f0}^2 = 2.2 \text{ GeV}^2$	1305	1798 [+0]	8371 [-79]	1436	1293 [+3]	4048 [-1]	
$\mu_{f0}^2 = 1.6 \text{ GeV}^2$	1303	1798 [-0]	8472 [+22]	1434	1289 [-1]	4050 [+1]	
$E_{u_v} = 0$	1319	1450 [-348]	3995 [-4455]	1440	1259 [-31]	4018 [-31]	

Quote these results as:

 $\begin{array}{l} \textbf{DIS (not sensible for HQ mass extraction):} \\ m_c(m_c) = 1798^{+144}_{-134}(\text{fit) MeV} \\ m_b(m_b) = 8450^{+2282}_{-1812}(\text{fit) MeV} \\ `E_{u_v} = 0`: m_c(m_c) = 1450 \text{ MeV}, \ m_c(m_c) = 3995 \text{ MeV (dominant par. unc.)} \\ \textbf{DIS + c + b:} \\ m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+7}_{-31}(\text{par}) \\ m_b(m_b) = 4049^{+104}_{-109}(\text{fit})^{+90}_{-32}(\text{mod})^{+1}_{-31}(\text{par}) \\ \text{Model unc. are dominated by scale var., par. unc. are dominated by `}E_{u_v} = 0`. \end{array}$

- \bullet x is average partonic momentum fraction calculated at NLO
- Charm: apparent x trend in wide Q^2 range fir $0.0005 \lesssim x \lesssim 0.01$
- Beauty: similar trend in the same x range within larger uncertainties
- These are paper plots

• Worser description of x at appr. NNLO

• These are **not** paper plots

- Better description of x w/out small x resummation, but worser description of Q^2 shape
- With small x resummation: data above theory
- These are **not** paper plots

- Apparent difference in x slope suggests that the HF data prefer a steeper low x gluon
- Gluon distribution is **not directly** constrained by inclusive data: relies on many assumptions (parametrisation, sum rules etc.)
- HF data are **directly** sensitive to the gluon distribution, however quantitatively they can not compete with inclusive data and the latter dominate in the fit
- to increase the weight of HF data, we apply $x > x_{\min}$ cut on inclusive data in the PDF fit and monitor changes by looking at χ^2 of HF data

PDFs with $x_{\min} = 0.01$ cut on inclusive data

31/34

K. Daum, A. Geiser, O. Zenaiev

Combination and QCD analysis of beauty and charm data

Data to theory comparison in the fit

- Fit with $x_{\min} = 0.01$ provides a steeper low-x gluon and better description of HF data:
 - $\chi^2 = 98$ vs 116 in nominal fit per 79 degrees of freedom

•
$$p = 0.07 \text{ vs } p = 0.004$$

• $x_{\min} = 0.01$: $m_c(m_c) = 1400^{+45}_{-51}$ MeV, $m_b(m_b) = 4.11^{+0.10}_{-0.11}$ GeV

Data to theory comparison in the fit

• However as expected, description of inclusive data excluded from the fit is worser: $\chi^2 = 2874$ vs 1435 in the nominal fit per 1224 data points

Summary

- Combination of charm beauty production measurements:
 - all input measurements are consistent
 - improved precision compared to previously published charm
 - first combination of beauty
- Combined data are compared to FFNS theoretical predictions:
 - \bullet overall reasonable description, but revealed tensions in \times slope
 - worser description by approximate NNLO
 - worser description by VFNS predictions
 - predictions with small x resummation does not provide good description of data
 - \Rightarrow revealed tension in data to theory comparison is not due to FFNS
- Extracted HQ masses:
 - attempts to extract from inclusive data only are sensible
 - $m_c(m_c) = 1290^{+46}_{-41} (\text{fit})^{+62}_{-14} (\text{mod})^{+7}_{-31} (\text{par}) \text{ MeV}$
 - $m_b(m_b) = 4049^{+104}_{-109} (\text{fit})^{+90}_{-32} (\text{mod})^{+1}_{-31} (\text{par}) \text{ MeV}$
- Further studies revealed that HF data are described better by PDFs with a steeper gluon:
 - in the adopted PDF framework, it appears in tension with the gluon distribution extracted from inclusive HERA data

Plots proposed for the paper

Plots proposed for the paper

46/34

K. Daum, A. Geiser, O. Zenaiev Co

Combination and QCD analysis of beauty and charm data

51/34

K. Daum, A. Geiser, O. Zenaiev

Combination and QCD analysis of beauty and charm data

53/34

K. Daum, A. Geiser, O. Zenaiev

Combination and QCD analysis of beauty and charm data

ZEUS D⁺ HERA-II [DESY-13-028]

Uncorrelated

- δ_1 Boxcut variation (±1%)
- δ_5 , δ_6 Signal extraction procedure ($<\pm 1\%, \frac{+0.7\%}{-1.5\%}$)

Point-to-point correlated

- δ_2 Electron energy scale (< $\pm 1\%$)
- δ_3 Hadronic energy scale (< $\pm 1\%$)
- δ_4 FLT trigger efficiency (< $\pm 1\%$)
- δ_7 Decay length smearing ($\pm 1\%$)
- δ_8 Beauty contribution to the cross sections ($\pm 2\%$)

$$\delta_9$$
, $\delta_{10}\,$ MC shape ($\pm 2\%$, $\pm 4\%$)

- δ_{11} Tracking efficiency (±1.5%)
- δ_{12} MVD hit efficiency (±0.9%)
- $\delta_{13} \ \chi^2_{sec. \ vtx.}$ smearing (+2%)
- $\delta_{14} \,\, D^+ o K^- \pi^+ \pi^+$ branching ratio ($\pm 2.1\%$)

 δ_{15} Luminosity (±1.9%)

More details in H1ZEUS HF meeting 19.04.2013

ZEUS D* HERA-II [DESY-13-054]

Uncorrelated

- δ_3 , δ_4 Boxcut variations ($\pm 1\%$, $\pm 1\%$)
- δ_5 , δ_6 Background shape (< $\pm 1\%$, < $\pm 1\%$)
 - δ_{11} Acceptance statistical uncertainty (±1%)
 - δ_{15} Resolved photon contribution to the acceptance (+2%)

Correlated

- δ_1 Hadronic energy scale ($\pm 1\%$)
- δ_2 Electron energy scale (±1%)
- $\delta_7 p_T(\pi_s)$ correction (±1.5%)
- δ_8 Signal outside the $M_{K\pi}$ window (+2%)
- δ_9 Tracking efficiecny ($\pm 2\%$)
- δ_{12} Beauty contribution to the acceptance (< $\pm 1\%$)
- δ_{13} , δ_{14} PHP and diffractive MC normalisations ($<\pm1\%$, $<\pm1\%$)

$$\delta_{16}$$
, $\delta_{17}\,$ MC shape ($\pm 2\%$, $^{+3\%}_{-2\%}$)

 δ_{18} Luminosity (±1.9%)

 $\delta_{19} \ D^* \to D^0 \pi^+, D^0 \to K^- \pi^+ \ (\pm 1.9\%)$

More details in H1ZEUS HF meeting 19.04.2013

• Treatment of systematics: as in the original paper for $m_b(m_b)$ extraction

The statistical uncertainties and the uncertainties $\delta_1, \delta_2, \delta_4^{\text{core}}, \delta_5$ and δ_{12} from Tables 12 and 13 were treated as uncorrelated, while all other uncertainties, including those from luminosity and from Table 18 were treated as point-to-point correlated. The

Treated as correlated between ZEUS D^+ , D^* and VTX HERA-II:

- tracking
- e/h energy scales
- lumi (also with beauty ZEUS el)

H1 b vertex DESY-09-096, ZEUS μ DESY-09-056, ZEUS el DESY-11-005, ZEUS μ HERA-I DESY-10-047

ZEUS $b \rightarrow \mu$ DESY-09-056, H1 b vertex DESY-09-096

• Charm data were included in previous H1ZEUS combination: treat same sources as correlated for beauty

ZEUS $b \rightarrow e$ DESY-11-005:

• Only lumi treated as correlated

ZEUS $b \rightarrow \mu$ HERA-I DESY-10-047:

• muon detection (7%) and lumi treated as correlated

 $\begin{array}{ll} \delta_{\mathrm{stat}}^2 = \delta_{\mathrm{uncor}}^2 + \delta_{\mathrm{cor}}^2 & \rightarrow & \delta_{\mathrm{cor}}^2 = \delta_{\mathrm{stat}}^2 \times |\rho| \text{, } \delta_{\mathrm{uncor}}^2 = \delta_{\mathrm{stat}}^2 - \delta_{\mathrm{cor}}^2 \\ \rho < 0 \Rightarrow \text{correlated uncertainties are assigned with different } \pm \text{signs for } c \text{ and } b \end{array}$

• ZEUS μ 2005: correlation factors ρ are used directly

- $\delta_{\text{stat}}^2 = \delta_{\text{uncor}}^2 + \delta_{\text{cor}}^2 \rightarrow \delta_{\text{cor}}^2 = \delta_{\text{stat}}^2 \times |\rho|$, $\delta_{\text{uncor}}^2 = \delta_{\text{stat}}^2 \delta_{\text{cor}}^2 \rho < 0 \Rightarrow$ correlated uncertainties are assigned with different \pm signs for c and b
- ZEUS vertex: to account for different *c* and *b* phase space, charm correlation factors are scaled by NLO predictions (see next slides)
- H1 vertex: to account for different c and b binning, split correlations according to NLO predictions (see next slides)

- Charm: $E_T(\text{jet} > 4.2 \text{GeV})$, beauty $E_T(\text{jet} > 5 \text{GeV})$
- Charm correlation factors are scaled by theory predictions: $\sigma(E_T(\text{jet} > 4.2 \text{GeV})) / \sigma(E_T(\text{jet} > 5 \text{GeV}))$
- This fraction ranges from 0.65 at low Q^2 , high x to 0.95 at high Q^2

• 29 c bins, 12 b bins, original Q^2 -y bin boundaries provided by H1

- Found 54 overlays \Rightarrow need 54 correlated uncertainty sources
- Use NLO predictions to split statistical uncertainty into uncorrelated and needed number of correlated parts (number of overlays σ_i): $\delta_{\text{stat}}^2 = \delta_{\text{uncor}}^2 + \sum_i \delta_{\text{cor},i}^2, \quad \delta_{\text{cor},i}^2 = \delta_{\text{stat}}^2 \times |\rho| \times \frac{\sigma_i}{\sigma} \underset{\text{mall impact: backup}}{\sigma}$

BACKUP. ZEUS μ HERA-I: extrapolation

х	NLO(pub)	reproduced	hadr	stat
0.00013	2.40e+00	2.48e+00[+3.5%]	5.0%	23.8%
0.00013	2.60e-01	2.66e-01[+2.4%]	5.0%	20.5%
0.00020	8.30e-01	8.70e-01[+4.8%]	5.0%	17.7%
0.00050	4.80e-01	4.60e-01[-4.2%]	5.0%	18.8%
0.00050	1.78e-01	1.84e-01[+3.2%]	5.0%	14.7%
0.00200	7.90e-02	7.88e-02[-0.3%]	5.0%	34.0%
0.00200	6.70e-02	7.01e-02[+4.7%]	5.0%	22.0%
0.00500	3.50e-02	3.44e-02[-1.6%]	5.0%	31.1%
0.00200	1.74e-02	1.82e-02[+4.4%]	5.0%	43.2%
0.00500	1.35e-02	1.36e-02[+0.6%]	5.0%	103.7%
0.01300	7.10e-04	6.94e-04[-2.2%]	5.0%	41.5%
	x 0.00013 0.00020 0.00050 0.00050 0.00200 0.00200 0.00200 0.00200 0.00200 0.00500	x NLO(pub) 0.00013 2.40e+00 0.00013 2.60e-01 0.00020 8.30e-01 0.00050 4.80e-01 0.00050 1.78e-01 0.00200 7.90e-02 0.00200 6.70e-02 0.00200 1.74e-02 0.00200 1.74e-02 0.00200 1.35e-02 0.01300 7.10e-04	x NLO(pub) reproduced 0.00013 2.40e+00 2.48e+00[+3.5%] 0.00013 2.60e-01 2.66e-01[+2.4%] 0.00020 8.30e-01 8.70e-01[+4.8%] 0.00050 4.80e-01 4.60e-01[-4.2%] 0.00050 1.78e-01 1.84e-01[+3.2%] 0.00200 7.90e-02 7.88e-02[-0.3%] 0.00200 3.50e-02 3.44e-02[-1.6%] 0.00250 1.74e-02 1.82e-02[+4.4%] 0.00500 1.35e-02 1.36e-02[+0.6%] 0.01300 7.10e-04 6.94e-04[-2.2%]	x NLO(pub) reproduced hadr 0.00013 2.40e+00 2.48e+00[+3.5%] 5.0% 0.00013 2.60e-01 2.66e-01[+2.4%] 5.0% 0.00020 8.30e-01 8.70e-01[+4.8%] 5.0% 0.00050 4.80e-01 4.60e-01[+4.2%] 5.0% 0.00050 1.78e-01 1.84e-01[+3.2%] 5.0% 0.00200 7.90e-02 7.88e-02[-0.3%] 5.0% 0.00200 6.70e-02 7.01e-02[+4.7%] 5.0% 0.00500 3.50e-02 3.44e-02[-1.6%] 5.0% 0.00200 1.74e-02 1.82e-02[+4.4%] 5.0% 0.00500 1.35e-02 1.36e-02[+0.6%] 5.0% 0.01300 7.10e-04 6.94e-04[-2.2%] 5.0%

- visible cross section are reported for μ (from b) + jet final state
- hadronisation corrections are needed for NLO: "...change the NLO QCD predictions by typically 5% or less." [DESY-10-047]
- $\bullet\,\Rightarrow\, {\rm apply}\; 5\%$ as uncorrelated uncertainty
- Experimental: treat 7% muon detection and 2% lumi as correlated, all other as uncorrelated (statistical and remaining uncorrelated systematics are much larger)

BACKUP. Impact of using HERAPDF2.0 vs HERAPDF1.0 for extrapolation

$$\sigma_{\mathrm{red}} = \sigma_{\mathrm{vis}} \frac{\sigma_{\mathrm{red}}^{\mathrm{NLO}}}{\sigma_{\mathrm{vis}}^{\mathrm{NLO}}}$$

Reminder:

- Need FFNS variant with consistent masses, scales and α_s settings: exists for HERAPDF1.0, does not exist for HERAPDF2.0
- Decision: check HERAPDF2.0 impact on central values

BACKUP. HERAPDF2.0 vs 1.0

charm

beauty

BACKUP. HERAPDF2.0 vs 1.0

Which uncertainty assign to PDFs in extrapolation:

HERAPDF1.0 uncertainty

HERAPDF2.0 impact

- $2\% \gtrsim \text{RMS}(\text{HERAPDF1.0 unc.}) \oplus \text{Mean}(\text{HERAPDF2.0/1.0})$
- treat as bin-to-bin uncorrelated (effective sum of many variations)

BACKUP. HERAPDF2.0 vs 1.0

No substantial Q^2 , x dependence:

- large Q^2 , x points seem to be just more affected by numerical precision
- Proceed with using HERAPDF1.0 for central values, assign uncorrelated 2% uncertainty for all points: consistent with HERAPDF2.0

Beauty semileptonic decay spectrum used for extrapolation

Massimo Corradi, 14 May 2008

HVQDIS for Beauty

The $B \rightarrow \mu X$ spectrum used in FMNR has been plugged in HVQDIS.

Massimo Corradi, 19 June 2008

Charm decay, HVQDIS and CLEO data

 $\textbf{D}^{\text{+}} \rightarrow \textbf{e} ~\nu ~\textbf{X}$

electron momentum in D^+ decay CLEO data at $\psi(3770)$ $\simeq D$ rest frame ($E_{kin} = 16 \text{MeV}$)

HVQDIS spectrum from Rapgap (Jetset) softer than CLEO data

naive free-quark model not so good

CLEO model based on ISGW parametrisation OK

Data and uncertainties[%]: charm

bin	Q^2 [GeV ²]	x	$\sigma_{\rm red}$	stat	uncor	cor	tot	bin	Q^2	$[GeV^2]$	x	$\sigma_{\rm red}$	stat	uncor	cor	tot
1	2.5	0.00003	0.11423	8.9	10.7	9.4	16.9	27		18.0	0.00450	0.11367	5.5	4.1	5.4	8.7
2	2.5	0.00007	0.11054	5.8	6.7	8.2	12.1	28	:	32.0	0.00060	0.38846	8.5	9.3	5.8	13.9
3	2.5	0.00013	0.09111	7.1	6.2	7.9	12.3	29	:	32.0	0.00080	0.37557	2.3	1.4	4.4	5.2
4	2.5	0.00018	0.09170	4.8	9.6	7.2	12.9	30		32.0	0.00140	0.28070	2.0	1.1	3.4	4.1
5	2.5	0.00035	0.05437	5.3	8.2	6.9	12.0	31		32.0	0.00240	0.21897	2.3	1.4	3.9	4.7
6	5.0	0.00007	0.15321	11.6	9.6	8.2	17.1	32		32.0	0.00320	0.20149	3.6	1.6	5.4	6.6
7	5.0	0.00018	0.15385	5.3	3.4	7.8	10.0	33		32.0	0.00550	0.15534	4.2	3.0	4.1	6.6
8	5.0	0.00035	0.11642	5.2	5.3	5.7	9.3	34		32.0	0.00800	0.09403	8.7	5.4	6.0	11.9
9	5.0	0.00100	0.07763	4.8	8.7	5.6	11.4	35	(50.0	0.00140	0.32542	3.2	1.4	4.8	5.9
10	7.0	0.00013	0.22486	4.3	3.3	6.7	8.6	36	(50.0	0.00200	0.32893	2.3	1.2	4.1	4.9
11	7.0	0.00018	0.20231	6.8	5.7	7.2	11.4	37	(50.0	0.00320	0.25762	2.2	1.2	3.6	4.4
12	7.0	0.00030	0.17669	2.3	2.4	5.4	6.4	38	(50.0	0.00500	0.19250	2.3	1.6	4.1	5.0
13	7.0	0.00050	0.16158	2.5	1.8	5.2	6.0	39	(50.0	0.00800	0.15960	4.8	3.1	3.4	6.7
14	7.0	0.00080	0.11994	4.6	4.0	4.9	7.8	40	(50.0	0.01500	0.09458	8.1	6.5	4.9	11.5
15	7.0	0.00160	0.09023	4.1	3.9	5.2	7.7	41	1	20.0	0.00200	0.37661	3.3	2.6	5.0	6.5
16	12.0	0.00022	0.31613	4.9	2.9	5.7	8.0	42	1	20.0	0.00320	0.22743	14.6	13.7	2.7	20.2
17	12.0	0.00032	0.29041	2.9	1.5	6.3	7.1	43	1	20.0	0.00550	0.21729	3.3	1.6	5.4	6.5
18	12.0	0.00050	0.24098	2.4	1.3	4.6	5.3	44	1	20.0	0.01000	0.15186	3.9	2.3	5.2	6.9
19	12.0	0.00080	0.18134	2.1	1.4	4.5	5.1	45	1	20.0	0.02500	0.07022	13.6	12.6	4.4	19.1
20	12.0	0.00150	0.14761	3.2	1.5	5.1	6.2	46	2	00.0	0.00500	0.23889	3.1	2.4	4.5	6.0
21	12.0	0.00300	0.10103	4.4	4.0	5.1	7.8	47	2	0.00	0.01300	0.17035	3.4	2.3	5.0	6.5
22	18.0	0.00035	0.31977	5.2	3.3	5.2	8.1	48	3	50.0	0.01000	0.22300	5.1	3.0	6.4	8.7
23	18.0	0.00050	0.29049	2.6	1.4	6.4	7.0	49	3	50.0	0.02500	0.10646	6.1	2.9	7.4	10.0
24	18.0	0.00080	0.25539	2.2	1.2	4.2	4.9	50	6	50.0	0.01300	0.20260	5.4	3.7	9.1	11.2
25	18.0	0.00135	0.20163	2.0	1.1	4.1	4.7	51	6	50.0	0.03200	0.08846	7.8	3.8	12.8	15.4
26	18.0	0.00250	0.16300	1.9	1.3	4.2	4.7	52	20	0.00	0.05000	0.06026	16.0	6.7	26.4	31.6

Data and uncertainties[%]: beauty

bin	Q^2 [GeV ²]	x	$\sigma_{\rm red}$	stat	uncor	cor	tot
1	2.5	0.00013	0.00184	28.4	22.4	11.4	37.9
2	5.0	0.00018	0.00476	10.5	7.1	19.8	23.5
3	7.0	0.00013	0.00593	8.8	11.2	12.7	19.1
4	7.0	0.00030	0.00398	8.5	10.3	15.2	20.2
5	12.0	0.00032	0.00715	4.9	5.8	10.5	13.0
6	12.0	0.00080	0.00409	4.6	6.9	11.1	13.9
7	12.0	0.00150	0.00145	32.2	26.9	3.6	42.1
8	18.0	0.00080	0.00817	4.8	5.0	12.8	14.5
9	32.0	0.00060	0.02074	8.9	7.8	8.9	14.8
10	32.0	0.00080	0.01516	5.8	6.1	10.0	13.1
11	32.0	0.00140	0.01135	3.9	5.3	9.0	11.2
12	32.0	0.00240	0.00824	9.0	9.5	12.9	18.4
13	32.0	0.00320	0.00464	32.2	41.9	3.0	52.9
14	32.0	0.00550	0.00579	39.8	20.4	57.4	72.8
15	60.0	0.00140	0.02599	4.8	6.9	8.8	12.2
16	60.0	0.00200	0.01672	7.5	6.5	10.5	14.4
17	60.0	0.00320	0.00975	10.7	7.7	14.4	19.5
18	60.0	0.00500	0.01287	5.4	4.2	14.7	16.2
19	120.0	0.00200	0.02876	6.3	5.4	9.0	12.2
20	120.0	0.00550	0.01268	21.2	14.9	10.9	28.1
21	120.0	0.01000	0.01485	20.5	20.6	23.6	37.5
22	200.0	0.00500	0.02737	3.8	3.7	6.9	8.7
23	200.0	0.01300	0.01231	9.5	4.8	19.5	22.2
24	350.0	0.02500	0.01381	20.4	26.2	35.0	48.2
25	650.0	0.01300	0.01641	8.1	7.5	13.1	17.1
26	650.0	0.03200	0.01027	8.1	8.7	14.6	18.8
27	2000.0	0.05000	0.00522	30.6	15.2	47.6	58.6

Data correlations[%]: charm vs charm

bin	1	2	3	- 4 -	- 5	6	7	8	9 1	10	11 :	12 1:	3 14	1 15	- 16	17	18	19	20 - 2	1 2	2 23	24	25	26	27	28	29	30	31	32 3	33 3	14 35	i 36	37	38	39	40 4	11 -	42 - 4	3 - 44	-45	-46	47	48	49	50 :	51 52
1	100	35	30	25	23	26	21	25	11 3	39	30 ;	32 2	3 17	7 8	34	31	26	23	10 -	0^{2}	3 29	22	19	7	-2	16	28	17	10	5	0 -	1 17	10	7	4	2	-3	1	2 3	5	-4	7	4	3	1	3 .	-1 1
2	35	100	- 41	24	33	31	20	35	18	10	30	46 3	6 2	7 16	42	40	38	35	18 9	2 3	30	32	31	17	3	21	40	28	19	à	÷.	1 27	: 17	16	12	6	2	7	4 8	13	-2	13	9	7	4	6	3 2
-	00		100		00	0.0	20	00	10			15 0		10		- 40	00	00				0.0	00		~			20	200	10	š		10	10	10	ě.	2 3		2.0							ž	
- 3	30		100	-01	-04	20	20	33	10 .	12	ar .	40 0	20	5 15	- 37	- 30	- 38	30	20 1	1 0	, ac	- 33	- 3-3	20			36	29	22	10	° .	4 20	10	19	10	0	9	0	0 2	1.5		1.4		0	0	1	0 0
- 4	25	34	31	100	29	23	25	31	19 ;	35	25 ;	38 - 3	4 27	7 19	32	- 33	34	32	22 1	2 2	9 33	30	31	22	7	15	34	27	21	11	11 :	2 23	17	18	15	9	6	.6	4 9) 11	1	13	10	8	5	6	6 3
5	23	33	32	29	100	21	25	32	24 ;	32	27 :	39 3	7 27	7 28	29	32	35	34	26 2	1 2	7 33	32	- 34	28	15	13	33	29	23	14	14 :	9 22	2 18	19	19	12	10 1	.6	5 1	1 14	3	13	12	8	8	7	8 3
6	26	31	26	23	21	100	19	24	12 :	44	25 :	30 2	3 16	: 9	30	27	24	23	11 :	3 2	5 26	21	19	9	1	15	26	17	11	6	3	0 16	i 10	9	6	3	0 1	1	3 4	6	-2	7	5	4	2	3	1 1
7	21	20	28	25	25	19	100	20	17 1	22	26	43 4	0 24	20	31	30	41	36	25 1	4 2	30	37	37	26	10	15	28	24	30	13	16	4 27	21	26	23	14	8 1	0	5 1	4 17	- 7	17	15	14	8	13	11 9
	25	25	22	21	20	24	200	100	05 1	20	20	44 4	0 20	27	22	27	40	40	20 2		1 22	97	40	20	14	10	20	25	20	15	10	7 00		24	21	14	19	0	0 1	2 17	- 2	10	14	10		0	10 4
0	20	33	33	-01	34	24	20	100	20 0	90	20 1		2 0	21	- 3-3		40	40	29 2	0 3			40	30	14	10	39	30	29	1.5	10	1 20	22	24	21	14	12 .	.9	0 1	3 11		10	14	10	0	9	10 4
9	11	18	18	19	24	12	17	25	100 1	16	15 3	27 3	0 24	1 28	15	22	26	28	27 2	5 10	5 23	26	30	29	21	-7	23	25	22	15	18 1	3 17	15	18	19	15	14 :	3	4 1	1 14	6	12	12	7	8	6	10 3
10	39	49	42	35	32	34	33	36	16 1	00	41 3	54 - 4	1 3	1 14	-53	46	46	41	21 3	5 4	3 45	40	35	18	2	24	48	34	23	11	6 :	2 33	\$ 20	20	14	8	0 1	:3	4 9	14	-2	17	11	10	5	8	4 3
11	30	39	37	25	27	25	26	29	15 4	11 1	00 4	41 3.	2 21	1 14	- 36	36	34	32	16 6	5 3	1 36	30	29	14	5	17	36	26	18	8	5 .	4 23	16	16	12	6	2	.6	4 8	\$ 13	$^{-1}$	13	9	7	5	7	3 3
12	32	46	45	38	39	30	43	44	27 3	54	41 1	00 5	8 43	3 32	48	56	59	56	38 2	2 4	5 58	54	54	38	18	23	57	50	40	21	22 1	0 40	31	36	30	20	12 ;	0	7 1	8 25	5	26	20	16	12	13	13 6
13	23	36	37	34	37	23	40	42	30	n –	32 3	58 10	0 43	3 40	38	47	57	57	47 3	0 3/	49	55	61	50	24	18	50	54	48	25	31 1	3 37	34	41	39	25	19 3	9	8 2	2 26	9	26	23	17	15	13	18 7
1.4	17	97	0.0	07	07	10	20	20	94 4	21	01	42 4	2 10	0 20	200	2.4	40	41	25 0	4 9	2 95	97	41	97	91	19	95	20	22	10	01 1	4 96	- 00	07	07	10	14 4		5 1	5 20		10	17	11	11	0	19 5
14	11	24	20	10	44	10	20	00	24 0		21 1	40 4	0 10	0 29		04	40	-41	33 2 30 4	4 <u>4</u>	00	- 01	41		21	10	30	30	00	19 .	21 1	4 20	22		21	19			5 1	5 20	0	19		10		9	10 5
15	8	10	19	19	28	9	20	21	28	4	14 .	32 4	0 23	9 100	14	23	32	30	39 4	0 2	20	- 34	42	44	- 34	0	28	35	32	24 :	29 1	9 22	- 22	29	30	22	21	1	5 1	1 21	9	18	20	1.3	15	9	10 5
16	34	42	37	32	29	30	31	33	15 3	53	36 -	48 3	8 22	5 14	100	42	44	38	21 3	43	5 41	- 39	34	19	3	21	45	34	24	11	8	2 32	21	21	15	9	0 3	3	4 1	0 14	-1	18	11	11	6	9	5 4
17	31	40	38	33	32	27	39	37	22 4	16	36 3	56 - 4	7 34	1 23	42	100	51	46	30 1	4 3	9 57	46	-43	29	11	20	51	41	31	18	16	6 36	27	28	21	14	7 1	18	6 1	4 18	2	22	16	14	9	11	7 4
18	26	38	38	34	35	24	41	40	26 4	16	34 3	59 5	7 40) 32	-44	51	100	55	40 2	4 - 4	2 52	57	55	42	19	19	54	53	44	22	27 1	1 41	35	39	34	23	14 ;	1	7 2	0 25	6	27	22	19	13	15	14 7
19	23	35	36	32	34	23	36	40	28 4	11	32 3	56 5	7 41	1 36	- 38	-46	55	100	49 3	1 3	3 48	54	59	50	24	19	52	53	47	30 :	31 1	4 41	36	39	37	26	18 ;	- 01	7 2	4 29	8	27	25	16	17	16 :	20 9
20	10	18	20	22	26	11	25	29	27 3	21	16 :	38 4	7 33	5 39	21	30	40	49 1	00 3	6 2	5 32	42	52	54	30	9	35	44	43	30 :	34 1	8 31	29	36	39	27	21 3	3	6 2	2 25	10	22	24	14	17	12	22 8
21	-0	8	11	12	21	3	14	20	25	5	6	22 3	0 2	1 40	5	14	24	31	36 10	0 1	12	- 27	35	42	36	3	20	30	20	22	20 5	13 16	10	25	29	22	23	ă.	4 1	6 21	0	15	19	11	15	0	16 5
22	20	20	22	20	07	05	20	21	10 .	6	21	45 2	0 00	2 20	42	20	40	20	05 1	1 10	0 20	20	20	0.0	2	10	44	20	200	12	12	1 20		25	10	11	5 1	12	5 1	0 15	1	10	14	12	0	10	0 5
22	20	30	33	2.9	41	2.9	20	31	10 .	10	31 -	40 0	9 41	20	40	33	42	30	20 1	1 10	0 33	- 39	- 30	20	÷.	19		30	20	1.5	1.5	1 32		20	10		2 -		3 1	2 13	-	19	14	1.0	9	10	0 0
23	29	39	38	33	33	26	39	37	23 4	15	36	58 4	9 3	5 26	41	-57	52	48	32 1	7 3	9 10	0 47	45	31	13	20	53	43	33	16	17	6 39	29	29	23	15	8 3	9	6 1	5 20	3	24	16	15	9	12	9 5
24	22	32	33	30	32	21	37	37	26 4	10	30 ;	54 53	2 3	34	39	46	57	54	42 2	7 3	9 47	100	- 55	45	20	17	51	53	44	23	30 1	1 35	35	-40	36	24	16 ;	11	7 2	2 25	8	27	23	19	14	15	16 7
25	19	31	33	31	34	19	37	40	30 3	35	29	54 6	1 41	42	- 34	-43	55	59	52 3	53	3 - 45	55	100	58	30	16	50	56	51	31 :	36 1	8 39	37	47	44	30	22 1	19	8 2	6 30	11	28	27	19	18	16 :	22 9
26	7	17	20	22	28	9	26	30	29 1	18	14 :	38 50	0 37	7 44	19	29	42	50	54 4	2 2	3 31	45	58	100	36	9	36	49	46	37 :	38 2	4 31	31	43	46	32	25 1	4	7 2	5 28	11	25	28	15	20	13 :	25 7
27	-2	3	7	7	15	1	10	14	21	2	5	18 2	4 21	1 34	3	11	19	24	30 3	6 7	13	20	30	36	100	0	15	23	24	20 :	26 2	6 14	15	22	25	20	20 1	1	3 1	4 19	7	13	17	9	13	7	14 4
28	16	21	17	15	13	15	15	16	7 4	2.4	17 9	23 1	8 11	3 5	21	20	10	10	0 1	1	2 20	17	16	0	0	100	21	16	11	5	3 -	0.1/	10	10	7	á.	1 1	0	2 1	. 6	-0	9	5	÷.	2	à i	3 2
20	28	40	38	24	33	26	38	30	23	18	36	57 5	0 32	2.98	45	51	54	52	35 2	0 4	5 5 1	51	50	36	15	21	100	49	38	19	ži –	8 45	30	36	28	10	n i	12	7 3	0 23	- 5	28	20	19	13	17	14 8
29	20	40	00	07	00	20	30	05	20 1		30 1	54 5	0 34	20	40		54	52	33 2	0 4	00	51	50	30	10	21	100	49	30	19 .	21 1	0 42	04	- 30	20	19	10 1	12	1 2	0 23	- 10	20	20	19	10	10	14 8
30	11	20	20		2.9		34	30	20 0	24	20 .	30 3	4 04	3.30	- 04	41	33	33	** 3	0 3	40	- 33	- 30	49	20	10	49	100	44	20	33 1	0 40	30	-40	40		19 .	-	2 2	0 28	10	-01	20		10	10	21 10
31	10	19	22	21	23	11	30	29	22 1	23	18	40 4	8 35	\$ 32	24	31	44	47	43 2	9 2	5 33	44	51	46	24	11	38	47	100	23	34 1	4 32	: 33	-41	41	27	19 1	5	7 2	5 28	10	26	24	20	17	18 :	22 11
32	5	9	10	11	14	6	13	15	15 1	11	8 3	21 2	5 19	9 24	11	18	22	30	30 2	2 13	3 16	23	31	37	20	- 5	19	28	23	100	19 1	.6 19	19	26	26	19	13 1	4	3 1	7 19	- 5	17	22	9	15	9	17 5
33	0	5	8	11	14	3	16	18	18	6	5 3	22 3	1 21	29	8	16	27	31	34 2	9 13	3 17	30	36	38	26	3	21	33	34	19 1	100 1	4 20	22	- 30	30	24	21	7	5 1	9 22	10	17	19	15	14	13	17 7
34	-1	1	4	2	9	0	4	7	13	2	4 0	10 1;	3 14	1 19	2	6	11	14	18 2	3 1	6	11	18	24	26	-0	8	13	14	16	14 10	00 8	8	14	17	13	12	7	2 8	13	4	8	11	5	8	5	9 3
35	17	25	25	23	22	16	25	26	17 ;	33	23	40 3	7 28	3 22	32	36	41	41	31 1	8 3	2 39	39	39	31	14	14	42	40	32	19 :	20 :	8 10	0 28	32	25	18	10 3	7	5 1	9 21	5	26	19	17	13	15	14 8
36	10	17	18	17	18	10	21	22	15 4	20	16	31 2	1 2		21	27	35	36	20 1		2 20	35	37	31	15	10	32	36	33	10	22	8 26	100	30	28	18	12 4	ė.	5 2	2 21	6	24	20	19	14	10	18 10
27	7	10	10	10	10	0	20	24	10 1	0	10	20 4	1 00	2 20	21	20	20	20	20 0	5 0	200	40	47	49	30	10	20	45	41	200	20 1	4 20	20	100	20	20	10 1	17	e 5	5 07		20	20	20	10	20	02 11
01	1	10	19	10	19		20	24	10 1		10 1	30 4 80 8	1 41	29	- 11	20	33	07	30 2	0 2 0 1	20	40	- 22	40	22	10	30	40	41	20	30 1	4 02		100	100	20	10 .		0 2	3 21	9	29	20	10	10	10	23 11
38	4	12	10	19	19	0	23	21	19 1	14	12 .	30 32	9 2	30	15	21	34	31	39 2	9 13	5 23	- 30	44	40	25		28	40	41	20	30 1	1 23	28	-38	100	29	19 .	2	0 2	4 20	9	29	29	19	19	17 .	24 10
39	2	6	8	9	12	3	14	14	15	8	6 3	20 2	5 19	9 22	9	14	23	26	27 2	2 1	1 15	24	30	32	20	- 4	19	27	27	19 :	24 1	3 18	5 18	26	25	100	15 1	4	4 1	5 17	7	17	16	11	11	10	14 6
-40	-3	2	-5	6	10	0	8	12	14	0	2	12 19	9 14	1 21	0	7	14	18	21 2	3 5	8	16	22	25	20	1	11	19	19	13 :	21 1	2 10	12	18	19	15	100	8	4 1	2 13	8	10	12	7	9	7	11 4
41	11	17	18	16	16	11	20	19	13 2	23	16 ;	30 2	9 21	1 17	23	28	31	30	23 1	4 2	3 29	31	29	24	11	10	32	32	25	14	17	7 27	25	27	22	14	8 1	00	4 1	9 19	4	25	18	18	12	18	17 9
42	2	4	5	4	5	3	5	6	4	4	4	7 8	\$ 5	5	- 4	6	7	7	6 4	1 5	6	7	8	7	3	2	7	8	7	3	5	2 5	- 5	6	6	4	4	4 1	.00 4	4	2	4	3	3	3	2	3 1
43	3	8	9	9	ii.	4	14	13	11	9	8	18 2	2 13	5 17	10	14	20	24	22 1	6 1	2 15	22	26	25	14	5	20	26	25	17	19 :	8 19	22	25	24	15	12	9	4 10	0 21	6	20	19	16	14	19	23 13
4.4	÷.	12	15		1.4	è	17	17	14 1	ŭ.	19 1	05 0	0 00		1.4	10	05	20	05 0	1 1	- 00	- 25	20	200	10		0.0	00	00	10	22 1	2 01	- 01	07	200	17	12	0	4 9	1 100		20	20	10	15	15	20 10
10	°.	1.0	10		14				14 1		10 .	20 20	0 20	, 21	- 14	10	20	29	20 2		20	2.0	30	20	19	0	-20	20	20	19 .	10 1	0 21	- 21		20		10 .		4 4	1 100	100	20		10	10	10 .	20 10
45	-4	-2	1	1	3	-2	4	9	0 -	-2	-1	0 5			-1	- 2	0	8	10 5		3	8	11	11	÷.	-0	9	10	10	5	10 .	4 5	0	9	9	4	8	4	2 0	0	100	9	9	4	4	4	0 2
-46		13	14	13	13		17	16	12 1	11	13 3	20 2	0 19	, 18	18	22	27	27	22 1	9 I	9 24	27	28	25	13	9	28	31	20	17	17	5 20	> 24	29	25	17	10 3	0	4 2	0 20	9	100	20	19	15	19	17 10
47	-4	9	11	10	12	5	15	14	12 1	11	9 :	20 2	3 17	7 20	11	16	22	25	24 1	9 1	1 16	23	27	28	17	5	20	26	24	22	19 1	1 19	20	26	25	16	12	.8	3 1	9 22	- 5	20	100	17	16	17	19 12
48	3	7	8	8	8	4	14	10	7 1	0	7	16 1	7 11	1 13	11	14	19	16	14 1	1 13	3 15	19	19	15	9	5	19	22	20	9	15	5 17	19	22	19	11	7	8	3 1	6 16	4	19	17	100	13	18	15 13
49	1	4	6	5	8	2	8	8	8	5	5	12 13	5 11	1 15	6	9	13	17	17 1	5 9	9	14	18	20	13	3	13	18	17	15	14 :	8 13	: 14	18	19	11	9	2	3 1	4 15	4	15	16	13	100	12	15 8
50	3	6	7	6	7	3	13	9	6	8	7	13 1:	3 9	- 9	ġ.	- ů	15	16	12 0	i n	1 12	15	16	13	7	- á -	17	18	18	9	13	5 15	19	20	17	10	7	8	2 1	9 15	4	19	17	18	12	100	19 18
51	-1	3	5	6	8	ĩ	11	10	10	ă.	3	13 1	8 1	a 16	5	7	14	20	22 1	6 8		16	22	25	14	3	14	21	22	17	17	9 1)	1 18	23	24	14	ii i	7	3 2	3 20	6	17	19	15	15	19 1	00 15
50											. ·			, 10	- 2	- 1		~			2	10						10		÷.	1	· 14	. 10	2.0	10		÷.			9 20 0 10	0	10	10	10		10 1	15 10
52	1	2	- 3	- 3	- 3	1	9	4	3	3	3	0 3	r 9	0	- 4	- 4		э	8 3) a	- 5	- 7	- 9	- 7	- 4	-2	8	10	11	9	4	3 8	10	41	10	0	4	9	1 1	3 10	2	10	12	13	8	18	15 100

Data correlations[%]: beauty vs charm

bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1	1	0	4	1	3	3	-2	1	1	1	1	$^{-1}$	$^{-1}$	1	3	-2	-3	-2	0	-2	0	1	-4	-2	-0	-2	-1
2	1	0	3	1	3	3	-2	1	1	1	2	-1	-1	1	3	-1	-3	-3	0	-2	0	1	-5	-2	-0	-2	-2
3	1	0	2	0	2	1	-1	1	0	0	2	-1	-1	1	2	-0	-3	-3	0	-1	0	-0	-5	-2	-0	-2	-1
4	1	0	2	-0	2	1	-1	1	0	-0	1	-1	-1	1	2	-0	-2	-1	1	-1	1	1	-3	-2	-1	-1	-1
6	1	0	3	-1	3	-0	-0	1	-0	-0	1	-1	-0	1	2	_1	-2	_2	0	-0	0	1	-2	-1	-1	-1	-1
7	-1	-30	1	_0	7	7	-0	Â	_0	1	6	-1	_0	1	ĩ	1	-1	-4	1	-1	1	ô	-5	-1	-1	1	_2
8	1	0	1	-1	2	i	-0	1	-0	-0	2	-1	-0	î	2	i	-2	-1	1	-0	1	1	-3	-2	-1	-1	-1
9	0	1	-0	-2	1	-2	0	0	-1	-0	0	-1	0	1	1	2	-1	2	1	0	1	1	-0	-0	-1	0	-1
10	1	1	2	2	5	3	-2	1	2	2	2	-3	-1	1	2	-1	-2	-4	0	-2	0	1	-6	-2	-1	-3	-2
11	1	0	3	1	3	3	$^{-1}$	1	1	1	2	$^{-1}$	$^{-1}$	1	3	-1	-3	-4	1	$^{-1}$	0	0	-5	-2	-0	-2	-1
12	1	2	2	$^{-1}$	3	1	$^{-1}$	4	1	1	3	$^{-3}$	-0	1	3	2	$^{-1}$	-4	1	-0	1	0	-6	$^{-1}$	-2	$^{-3}$	-2
13	-0	1	0	-2	3	$^{-5}$	0	2	1	1	4	-4	0	1	2	4	1	0	2	1	1	2	$^{-3}$	0	$^{-3}$	$^{-1}$	-1
14	-0	1	0	$^{-1}$	2	-2	0	1	0	1	1	-4	0	1	0	3	1	0	1	0	1	0	-2	1	$^{-3}$	$^{-1}$	-1
15	-0	1	$^{-1}$	-3	0	-3	1	0	-1	-0	0	-2	1	1	1	4	0	4	2	1	1	1	1	0	$^{-1}$	0	-0
16	1	0	4	1	4	3	-2	1	1	1	2	-2	-1	1	2	-1	-3	-5	0	-2	0	0	-6	-2	-1	-2	-1
17	1	4	3	0	-1	6	-1	7	1	0	3	-2	-1	1	4	1	-2	-5	0	-1	1	0	-5	-2	-1	-4	-2
10	1	1	2	-1	3	1	-0	1	0	1	4	-2	-0	1	3	2	-2	-3	1	0	1	0	-0	-2	-1	-2	-1
20	0	1	1	-2	4	-6	1	2	1	1	2	-3	1	1	3	3	-1	-0	3	1	1	2	-3	-1	-3	-1	-3
21	-0	1	_2	_3	_0	-3	1	_0	-1	-1	_1	-1	1	1	ĩ	3	-1	3	2	1	1	1	ñ	-1	-1	1	-0
22	1	ô	3	1	4	2	-1	0	1	1	1	-2^{-2}	-1	ô	1	1	-2^{-2}	-4	õ	-1	ô	-0	-5	-2^{-2}	-2^{1}	-2	-1
23	1	3	3	0	6	4	$^{-1}$	-12	1	1	1	-2	$^{-1}$	0	1	1	-2	-8	0	-1	1	-2	-9	$^{-1}$	-3	-4	-3
24	0	1	1	$^{-1}$	4	4	0	0	0	0	0	-2	0	0	3	3	-2	-2	2	0	1	1	-5	-2	-1	$^{-1}$	-0
25	0	1	-0	-2	2	2	1	0	0	0	0	-2	1	1	3	4	-2	3	3	1	2	2	$^{-1}$	-2	-1	-0	-1
26	-0	2	-2	-4	$^{-1}$	$^{-1}$	1	-0	-1	$^{-1}$	$^{-3}$	-2	1	0	1	4	-2	9	3	1	1	2	4	$^{-1}$	-2	0	-0
27	-0	1	$^{-2}$	$^{-3}$	$^{-1}$	$^{-3}$	1	-0	-0	$^{-1}$	-0	$^{-1}$	1	1	1	2	$^{-1}$	4	2	1	1	1	2	$^{-1}$	-0	1	-0
28	1	0	3	2	3	2	$^{-1}$	1	-10	2	1	-2	$^{-1}$	0	1	1	1	-2	1	$^{-1}$	0	0	-2	-0	-1	-2	$^{-1}$
29	1	1	2	-0	5	4	-1	-9	1	-3	3	-1	-0	-2	2	2	-3	-6	2	-1	1	-0	-7	-3	-1	-2	-2
30	0	1	0	-2	3	2	1	-1	0	1	-5	-2	0	-0	1	5	-1	-2	2	1	0	1	-3	-1	-2	-1	-1
31	-0	1	-1	-3	1	1	1	1	-1	-0	-1	-9	1	1	2	4	-1	-0	3	1	1	2	-2	-1	-1	1	-1
32	1	0	-0	-2	1	1	-	-0	-0	-0	-0	-1	1	1	1	2	-2	10	â	2	2	1		-1	-1	1	-0
34	-0	1	-1	-2	-0	-1	ô	-0	-1	-1	-0	-1	0	0	1	1	-2	4	2	ô	ő	1	3	-1	-0	0	-0
35	0 O	1	1	-2	3	0	-0	Ő	-0	-1	-0	-2	-0	-0	-12	1	-3	-6	1	ő	ő	-2	-6	-2	-4	-2	-2
36	-1	-1	-1	-3	1	-0	0	-0	-1	-2	1	-2	0	-0	-10	-10	-2^{-2}	-4	1	ŏ	ŏ	0	-4	-1	-1	-2	-1
37	-0	-0	$^{-1}$	-3	1	2	1	-2	-1	$^{-1}$	3	$^{-1}$	1	0	-0	3	-14	-10	3	1	1	-1	1	$^{-3}$	-0	0	-0
38	-1	-0	-2	-4	-2	$^{-1}$	1	$^{-3}$	-1	$^{-1}$	2	-2	1	0	$^{-1}$	3	-2	-20	3	1	1	-0	$^{-1}$	-2	-2	-2	-0
39	-0	0	$^{-1}$	$^{-3}$	1	$^{-1}$	1	0	-1	$^{-1}$	0	$^{-1}$	1	0	1	3	$^{-1}$	1	2	1	1	1	0	$^{-1}$	-1	0	-0
40	-0	0	-2	$^{-2}$	$^{-1}$	$^{-1}$	1	-0	$^{-1}$	$^{-1}$	1	0	1	0	1	2	-0	2	1	1	1	0	1	$^{-1}$	0	1	-0
41	0	1	0	-1	5	1	0	3	1	1	1	$^{-1}$	0	-2	-2	2	-1	-4	-16	1	0	-3	-2	-0	1	0	-0
42	0	-0	-0	-0	0	0	0	-0	0	-0	0	-0	0	0	0	1	-0	-0	0	0	0	0	-0	-0	-0	-0	-0
43	-1	-0	-2	-2	1	-1	1	0	-1	0	0	-0	1	-1	-4	1	-1	-5	1	-4	2	-5	-6	-2	-1	0	-2
44	-0	1	-1	-2	1	-0	1	-0	-0	0	1	2	0	3	1	2	-2	-8	2	3	-1	-0	-11	-3	1	1	-1
45	-0	-0	-1	-1	-0	-1	0	-0	-0	-0	-1	-0	0	-1	-0	2	-1	-5	2	0	0	-0 -27	2	_2	-0	_1	_2
47	-0	0	-0	-1	2	0	1	0	-0	0	1	0	ő		~	2	_2	°.	2	1	1	-1	-13	_3	~	3	-0
48	-0	-0	-0	-1	2	-0	ô	ĭ	-0	-0	ô	-0	ŏ	-0	ĩ	1	$-\tilde{2}$	-5	õ	î	ô	-3	-0	-2°	-6	ŏ	0Ŭ
49	-0	0	-1	-2	-0	-2	1	-1	-0	-0	-0	-1	ó	-0	-1	1	-1	2	ó	1	-0	-2	-2	-19	-2	-8	-1
50	-1	-2	$^{-1}$	$^{-3}$	2	$^{-1}$	0	-0	-1	-2	-0	0	0	-0	1	0	$^{-3}$	-7	1	0	0	$^{-0}$	-0	-3	-30	-2	-2
51	-1	-2	-2	$^{-3}$	-0	-4	1	$^{-1}$	-1	2	$^{-1}$	-2	1	$^{-1}$	0	2	$^{-1}$	1	1	1	2	1	3	$^{-1}$	-1	-25	-2
52	-0	$^{-2}$	$^{-1}$	$^{-1}$	1	$^{-1}$	0	0	-0	0	$^{-1}$	0	0	-0	1	1	$^{-1}$	$^{-5}$	1	0	0	1	0	$^{-1}$	1	4	-61
Data correlations[%]: beauty vs beauty

bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1	100	9	10	8	9	10	1	5	7	8	8	6	-0	1	6	7	3	6	4	3	1	4	3	$^{-1}$	3	2	1
2	9	100	12	11	17	17	1	17	8	11	19	7	-0	1	8	10	5	16	6	3	2	6	9	-0	1	10	1
3	10	12	100	18	19	19	1	12	10	18	17	10	$^{-0}$	1	14	15	8	9	10	3	2	13	5	-0	3	4	1
4	8	11	18	100	22	21	1	13	10	22	19	13	$^{-0}$	1	17	16	12	10	11	2	3	14	5	2	7	6	2
5	9	17	19	22	100	26	1	37	11	23	25	12	$^{-0}$	1	28	18	12	8	13	2	3	22	5	1	9	3	1
6	10	17	19	21	26	100	1	21	11	21	36	16	$^{-0}$	2	23	16	9	24	13	3	4	19	15	1	11	10	3
7	1	1	1	1	1	1	100	1	1	1	1	1	0	0	1	1	1	1	1	1	0	1	1	-0	0	0	0
8	5	17	12	13	37	21	1	100	7	15	20	9	$^{-0}$	2	31	11	8	8	8	2	2	26	4	1	9	1	2
9	7	8	10	10	11	11	1	7	100	11	10	6	0	1	8	9	6	6	7	3	2	7	4	2	3	3	1
10	8	11	18	22	23	21	1	15	11	100	21	12	-0	2	18	19	15	11	14	4	7	16	7	4	6	7	2
11	8	19	17	19	25	36	1	20	10	21	100	15	0	3	23	18	10	30	14	3	6	21	18	2	10	16	4
12	6	7	10	13	12	16	1	9	6	12	15	100	0	9	12	9	5	8	9	2	6	12	5	0	9	6	2
13	-0	-0	-0	-0	-0	-0	0	-0	0	-0	0	0	100	0	-0	0	0	0	0	1	0	0	0	0	0	0	0
14	1	1	1	1	1	2	0	2	1	2	3	9	0	100	2	1	1	2	2	3	25	2	1	0	1	3	0
15	6	8	14	17	28	23	1	31	8	18	23	12	$^{-0}$	2	100	16	9	12	13	2	3	25	8	1	13	6	4
16	7	10	15	16	18	16	1	11	9	19	18	9	0	1	16	100	12	10	13	3	3	15	6	4	4	7	2
17	3	5	8	12	12	9	1	8	6	15	10	5	0	1	9	12	100	8	8	2	2	9	3	5	3	4	1
18	6	16	9	10	8	24	1	8	6	11	30	8	0	2	12	10	8	100	8	3	4	16	32	2	8	25	6
19	4	6	10	11	13	13	1	8	7	14	14	9	0	2	13	13	8	8	100	3	4	13	5	3	4	6	1
20	3	3	3	2	2	3	1	2	3	4	3	2	1	3	2	3	2	3	3	100	4	2	2	0	1	3	0
21		2	2	3	3	4	0	2	2	10	6	6	0	25	3	3	2	4	4	4	100	3	4	1	2	5	1
22	4	0	13	14	22	19	1	20	- (10	21	12	0	2	25	15	9	10	13	2	3	100	11	0	12	11	5
23	3	9	5	5	5	15	1	4	4	- 1	18	5	0	1	8	6	3	32	5	2	4	11	100	2	- <u>`</u>	24	5
24	-1	-0	-0	2	1	1	-0	1	2	4	2	0	0	0	1	4	0	2	3	0	1	0	2	100	1 100	4	1
20	3	1	3	6	9	11	0	9	3	0	10	9	0	1	13	4	3	6	4	1	2	12		1	100	100	4
26	2	10	4	0	3	10	0	1	3	(16	6	0	3	0	6	4	25	0	3	6	11	24	4	- (100	4
27	1	1	1	2	1	- 3	0	2	1	-2	4	- 2	0	0	4	2	1	0	1	0	1	9	Э	1	4	4	100

Parametrisation study

Nominal 14p (HERAPDF2.0):

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{split}$$

Darametrication	DIS	5 + c -	$+b \mid$	DIS				
Farametrisation	chi2	mc	mb	chi2	mc	mb		
14p nominal	1435	1.29	4.05	1304	1.80	8.45		
12p Aprig=0	1439	1.29	4.04	1308	1.78	8.03		
13p DUbar=0	1459	1.26	3.98	1330	1.45	3.57		
13p Euv=0	1441	1.26	4.02	1319	1.45	4.00		
15p Cprig	1435	1.29	4.05	1303	1.80	8.49		
15p DDbar	1435	1.29	4.05	1304	1.80	8.44		
15p Ddv	1435	1.29	4.05	1304	1.80	8.41		
15p Dg	1435	1.29	4.06	1303	1.80	8.53		
15p Duv	1418	1.29	4.04	1289	1.80	8.18		
15p EDbar	1435	1.29	4.05	1304	1.80	8.49		
15p Edv	1435	1.29	4.05	1304	1.80	8.44		
15p Eg	1435	1.29	4.05	1303	1.80	8.79		
15p EUbar	1435	1.29	4.05	1304	1.80	8.43		
15p FDbar	1435	1.29	4.05	1304	1.80	8.52		
15p Fdv	1435	1.29	4.05	1304	1.80	8.45		
15p Fg	1435	1.29	4.05	1303	1.80	8.74		
15p FUbar	1429	1.29	4.04	1297	1.80	8.13		
15p Fuv	1429	1.29	4.05	1299	1.80	8.33		

Additional constrains:

$$A_{\bar{U}} = A_{\bar{D}}(1 - f_s), B_{\bar{U}} = B_{\bar{D}}, C'_g = 25$$

 $\int_0^1 [\sum_i (q_i(x) + \bar{q}_i(x)) + g(x)] x dx = 1$
 $\int_0^1 [u(x) - \bar{u}(x)] dx = 2,$
 $\int_0^1 [d(x) - \bar{d}(x)] dx = 1$

'13p Euv=0' is taken as parametrisation uncertainty

74/34

K. Daum, A. Geiser, O. Zenaiev

Combination and QCD analysis of beauty and charm data

PDFs with $x_{\min} = 0.01$ cut on inclusive data

75/34

K. Daum, A. Geiser, O. Zenaiev

Comparison of PDFs

Constraints on low-x gluon are from HF data included in the fit

Cross sections as function of $x(1 + 4m^2/Q^2)$

 x_{Bj}

 $x_{
m Bj}(1+4m^2/Q^2)pprox\xi$

Cross sections as function of $x(1 + 4m^2/Q^2)$

 x_{Bj}

 $x_{\rm Bj}(1+4m^2/Q^2)\approx\xi$

parametrisation scan for $x_{\min} > 0.015$ fit

DIS+c+b	DIS					
/Cprig/ 737.29	/Cprig/ 632.65					
/DDbar/ 737.09	/DDbar/ 632.88					
/Ddv/ 737.08	/Ddv/ 632.68					
/Dg/ 737.32	/Dg/ 632.50					
/Duv/ 718.36	/Duv/ 617.49					
/EDbar/ 737.15	/EDbar/ 632.65					
/Edv/ 737.10	/Edv/ 632.83					
/Eg/ 737.31	/Eg/ 614.64					
/EŪbar/ 732.00	/EUbar/ 630.99					
/FDbar/ 737.07	/FDbar/ 631.39					
/Fdv/ 735.79	/Fdv/ 632.33					
/Fuv/ 732.10	/Fuv/ 627.69					
/nom/ 737.33	/nom/ 632.88					

- these are χ^2 values for DIS+c+b and DIS fits with $x_{\rm min}>0.015$ cut on inclusive data
- 'nom' is nominal 14p parametrisation
- each other entry is when one parameter released (not all fits converged to physcial solutions, e.g. DIS Eg free fir produces negative gluon at $x \sim 1$)
- in general, very similar results to the nominal fit (in particular Duv)

Comparison to NNPDF: lowest Q^2 bin

Comparison to NNPDF: uncertainties

81/34

PDF parameters for fits with x_{\min} cuts

Parameter	DIS+c+b x min=0.01	DIS+c+b 12p x min=0.01	DIS x min=0.01	DIS x min=0.01 fixed m	DIS 12p x min=0.01 fixed m
'Bg'	-0.03 ± 0.11	-0.037 ± 0.051	-0.42 ± 0.28	-0.32 ± 0.33	0.16 ± 0.13
′Cg′	11.6 ± 2.8	7.16 ± 0.84	4.3 ± 1.8	4.1 ± 2.1	9.0 ± 1.5
'Aprig'	9 ± 10	-	0.10 ± 0.17	0.09 ± 0.19	-
'Bprig'	0.12 ± 0.19	0.1080	-0.77 ± 0.12	-0.72 ± 0.16	-0.7248
'Cprig'	25.00	25.00	25.00	25.00	25.00
'Buv'	0.693 ± 0.038	0.683 ± 0.042	0.721 ± 0.042	0.708 ± 0.043	0.692 ± 0.042
'Cuv'	4.831 ± 0.085	4.861 ± 0.086	4.844 ± 0.087	4.862 ± 0.086	4.856 ± 0.085
'Euv'	13.0 ± 2.3	13.8 ± 2.7	12.1 ± 2.3	12.9 ± 2.5	13.4 ± 2.5
'Bdv'	0.89 ± 0.10	0.90 ± 0.11	0.95 ± 0.10	0.90 ± 0.11	0.87 ± 0.11
'Cdv'	4.63 ± 0.43	4.67 ± 0.50	4.76 ± 0.47	4.58 ± 0.51	4.51 ± 0.46
'CUbar'	8.00 ± 0.80	7.86 ± 0.99	7.9 ± 1.3	7.8 ± 1.2	8.06 ± 0.88
'DUbar'	12.8 ± 6.7	6.1 ± 4.0	3.3 ± 3.7	4.7 ± 4.6	10.8 ± 6.6
'ADbar'	0.178 ± 0.073	0.321 ± 0.090	0.42 ± 0.13	0.29 ± 0.11	0.200 ± 0.096
'BDbar'	-0.165 ± 0.081	-0.046 ± 0.056	-0.010 ± 0.066	-0.062 ± 0.079	-0.132 ± 0.098
'CDbar'	7.4 ± 2.7	11.6 ± 3.3	14.2 ± 3.9	10.4 ± 3.4	7.5 ± 3.0
'alphas'	0.1060	0.1060	0.1060	0.1060	0.1060
'fs'	0.4000	0.4000	0.4000	0.4000	0.4000
'mc'	1.400 ± 0.014	1.384 ± 0.052	1.924 ± 0.048	1.270	1.270
'mb'	4.10 ± 0.10	4.10 ± 0.11	9.4 ± 3.3	4.170	4.170

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$$