

Helmholtz Program: Matter and the Universe

PoF III Topic: n.a. (PoF II Topic: HERA physics)

DESY Research Unit: Experimental Particle Physics

Stefan Schmitt Center Evaluation DESY, 5 – 9 February 2018

HERA in the PoF

- Data taking: 1992-2007
- HERA analysis: POF II (until 2014)
- No dedicated funding in POF III
- DESY scientists moved to other groups in 2014:
 ATLAS, CMS, Belle, ILC, ...
- HERA data preservation at DESY within the DPHEP initiative
- HERA collaborations ZEUS, H1, HERMES continue to produce scientific results
- Selected highlights of 2013-2017 are presented in this talk

DESY experimental particle physics (long-term plan shown in 2013)

The HERA collider

Operation 1992-2007

The HERA machine

Polarized electrons or positrons at 27.6 GeV, protons at 920 GeV

Centre-of-mass energy 320 GeV

The experiments

- Collider experiments H1 and ZEUS
- Lepton beam on polarized gas target: HERMES

The data

- Total integrated luminosity H1+ZEUS: 1 fb⁻¹
- Data are preserved for long-term analysis

Scientific output (1992-2017)

- About 550 publications in peer-reviewed journals
- Thousands of talks on international conferences

Selected recent results from HERA

Highlight results achieved from 2013-2017

Publications since 2013

H1 and ZEUS combined: 2 papers

H1: 12 papers

ZEUS: 15 papers

HERMES: 12 papers

Selected results for this talk:

- Searches and electroweak: limit on the quark radius
- Proton structure: H1+ZEUS data combination and PDF
- Perturbative QCD: determination of the strong coupling at NNLO from jet data
- Hadron formation: HERMES identified pions and kaons
- Spin: HERMES identified pion and kaon production on transversely polarized target

Deep-inelastic scattering (DIS)

at HERA

• Electrons interact with the protons by exchanging a gauge boson (photon or Z: "neutral current", W: "charged current")

Momentum transfer: Q²= -(e-e')²

Spatial resolution: R~1/Q

Differential cross section or event rate per Q² interval falls off

steeply with increasing Q²

 Data are very precise (combination H1+ZEUS)

- At high Q², charged and neutral current cross section are similar in size
- Visualizes electroweak unification

Limit on the quark radius from HERA data

HERA - the attometer microscope

- Spatial resolution: R ~ 1/Q
- HERA probes distances R<10⁻¹⁸ m
- Electron is scattered on quarks in the proton
- Quarks are found to be point-like: R_α²<0.43 am²

Phys.Lett.B757 (2016), 468

H1 and ZEUS combined data

Proton structure precision measurements

- H1 and ZEUS data on inclusive DIS and on charm/beauty production are combined
- Goal: reach best possible precision
- Very high impact on the field
 - 2009 combination of inclusive data: ~900 citations
 - 2012 combination of charm data: ~200 citations
 - 2015 combination of inclusive data: ~200 citations
 - New publication on charm and beauty data combination in preparation
- Data combination shown in this presentation:
 - 2015 combination of inclusive data

Colored: before combination

Black: H1+ZEUS combined results

Shown here: reduced cross section as a function of Q² and Bjorken-x (x corresponds to the proton longitudinal momentum fraction taken by the struck quark)

Inclusive HERA data: proton parton density functions (PDFs)

The importance of HERA for LHC predictions

- DIS probes PDF most directly
- HERA data: reach to low x and large scales Q²
- DGLAP theory: connect PDFs at different scales

 Of greatest importance for LHC results: all their predictions depend on the PDFs (i.e. on the HERA data)

PDF determination from HERA data

Partons in the proton at small x

- High precision HERA data are used by all PDF fitting groups
- The paper got over 200 citations in only 2½ years
- HERAPDF2.0: determined from HERA data alone
- Main uncertainties: model and parametrisation variations

H1 and ZEUS

Jet production and determination of α_s at NNLO

A joint effort of theorists and experimentalists

Strong coupling α_s is difficult to measure because of large higher-order corrections

New measurement from H1 jets in next-tonext-to leading order

 First-time NNLO extraction from jet data at a hadron collider (calculations became available only in 2016)

- Close cooperation with theorists was essential $\widehat{\underline{\varepsilon}}$
- A milestone for QCD at hadron colliders

H1 and NNLOJET

 $\alpha_{\rm s}$ determinations in NNLO

HERAPDF2.0Jets (NLO)

Pre-average DIS [PDG16]

ABM

ABMP BBG

NNPDF **MMHT**

Identified charged pions and kaons in the proton

High precision measurement of the hadronisation process at low scales

z: fractional hadron

Fragmentation functions f(z) are expected to be universal e⁺e⁻, ep, pp,...

- HERMES: excellent particle identification
- Models fail to describe the high-precision data
- A benchmark for model builders and for improving Monte Carlo simulations
- High relevance for quark-flavor tagging via final state hadrons, e.g. in polarized scattering
- Over 100 citations in 4 years

Left-right asymmetries in inclusive hadron production

Hadrons emitted from a transversely polarized target

Valence quarks

р	uud
π+	ud
π-	ud
K ⁺	us
K-	us

- Target spin is oriented "up" or "down"
- Electron beam is coming from the back
- Hadron asymmetry is in the left/right coordinate

$$A_{UT}^{sin(\psi)} \sim \frac{N_L - N_R}{N_L + N_R}$$

- Sizable asymmetries for the positively charged hadrons π⁺ and K⁺, much smaller for the negatively charged hadrons
- Probes spin-orbit effects of valence- and sea-quarks in the proton

Conclusions

- POF funding for HERA ended in 2014
- The HERA data are unique: the world's only ep collider
- Data are preserved for future analysis
- Many new analyses and high-impact papers were produced years after the end of data taking
- High-precision combinations of H1 and ZEUS data are performed where possible
- HERMES continues to exploit its unique data set on polarized semi-inclusive DIS
- Stay tuned for the next +10 years after the end of HERA data taking

