RooFit, RooStats — Building, debugging & analyzing
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with special focus on profile likelihood
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Roadmap of todays course

Software 1 — Overview: building and analyzing models
with RooFit, RooStats & HistFactory

Modeling 1 — Systematic uncertainties, “Profile Likelihood”:
Counting models with nuisance parameters

Statistics 1 — Treatment of nuisance parameters in statistics inference

Software 2 — Hands-on: Counting models with NPs in RooFit
limits & confidence intervals with RooStats

Modeling 2 — Modeling distributions with nuisance parameters,
basics of template morphing

Modeling 3 — Understanding complex fits — debugging techniques

Software 3 - Hands-on: Modeling (un)binned distributions in RooFit,
Combination & reparametrization
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Software 1

Overview:
building and analyzing models
with
RooFit, RooStats & HistFactory



The HEP analysis workflow illustrated

LHC data
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All experimental results start with the formulation of a model

e A statistical model defines p(dataltheory) for all observable outcomes

g
=
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Projection of p

— Example of a statistical model for a counting measurement with a known background

P(n|s+0b) = e

(s +0)" —(5+b)

n!

NB: b is a constant in this example

Definition: the Likelihood
is P(observed dataltheory)
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Everything starts with the likelihood

- All fundamental statistical procedures are based
on the likelihood function as ‘description of the measurement’

s=0 !

("; T b)" —(';—i—b)
P(n|s+b) = e
n.
NB: b is a constant in this example
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Definition: the Likelihood e.g. L(1 5|S=0)
is P(observed dataltheory) g g, L(15|s=10)
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Everything starts with the likelihood

Frequentist statistics  Bayesian statistics Maximum Likelihood
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How is Higgs discovery different from a simple fit?

Gaussian + polynomial Higgs combination mode/
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How is Higgs discovery different from a simple fit?

Gaussian + polynomial

Events /(0.2)
E &
T T |
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ROOT TH1 ROOT TF1

L(N | ,u,é) = HPoisson(Ni I f(xi,u,é)
‘inside ROOT”

ML estimation of
parameters p,6 using MINUIT
(MIGRAD, HESSE, MINOS)

V¥

u=53=+1.7

Likelihood Model
orders of magnitude more
complicated. Describes

- O(100) signal distributions
- O(100) control sample distr.

- O(1000) parameters
representing
syst. uncertainties

L( 1\",,. /\",, - /\"““ | 0,0) = n Poisson(N,,...) I_I Poisson(N,,,...) H Poisson(N y,,...)

. B

Frequentist confidence interval
construction and/or p-value
calculation not available

as ‘ready-to-run’ algorithm

in ROOT
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How is Higgs discovery different from a simple fit?

Gaussian + polynomial Higgs combination mode/

g
o

Model Building phase (formulation 6f L(x|H)

Evon§u 1(0.2)
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L(]V I u,é) = HPoisson(Ni If(xi,u,é)
‘inside ROOT” i

ML estimation of ‘

parameters 1,8 using MINUIT s T
(MIGRAD, HESSE, MINOS)

LN, N, Ny | 14,0) = n Poisson(N,,...) I_I Poisson(N,,....) H Poisson(Ny,...)

pH,)= [ f(AIH,)dA=...
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Propecton of

How is Higgs discovery different from a simple fit?

Gaussian + polynomial

Events /(0.2)
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ROOT TH1 ROOT TF1

L(N | ,u,é) = HPoisson(Ni If(xi,u,é)
‘inside ROOT” i

| ML estimation of
parameters p,06 using MINUIT
(MIGRAD, HESSE, MINOS)
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Higgs combination mode/
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How is Higgs discovery different from a simple fit?

Gaussian + polynomial Higgs combination mode/

Design goal:

Separate building of Likelihood model as much as possible
from statistical analysis using the Likelihood model

- More modular software design
- ‘Plug-and-play with statistical techniques
- Factorizes work in collaborative effort

R

Ill‘n

ML estimation of
parameters p,0 using MINUIT T AT
(MIGRAD, HESSE, MINOS)
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The idea behind the design of RooFit/RooStats/HistFactory

e Modularity, Generality and flexibility
e Step 1 — Construct the likelihood function L(x|p)

RooFit, or RooFit+HistFactory

e Step 2 - Statistical tests on parameter of interest p

Procedure can be Bayesian, Frequentist, or Hybrid),
but always based on L(x|p)

RooStats

e Steps 1 and 2 are conceptually separated,
and in Roo™ suit also implemented separately.

Wouter Verkerke, NIKHEF



The idea behind the design of RooFit/RooStats/HistFactory

e Steps 1 and 2 can be ‘physically’ separated (in time, or user)

e Step 1 — Construct the likelihood function L(x|p)

RooFit, or RooFit+HistFactory

4

RooWorkspace

4

Complete description
of likelihood model,
persistable in ROOT file

(RooFit pdf function)

Allows full introspection
and a-posteriori editing

e Step 2 - Statistical tests on parameter of interest p

RooStats

Wouter Verkerke, NIKHEF



The benefits of modularity

e Perform different statistical test on exactly the same model

RooFit, or RooFit+HistFactory

$

RooWorkspace
“Simple fit” RooStats RooStats RooStats

(MLFit with — (Frequentist  (Frequentist ~ Bayesian
MiNos)  Withtoys)  asymptotic) MCMC
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RooFit

WV + D. Kirkby - 1999



RooFit — Focus: coding a probability density function

e [ocus on one practical aspect of many data analysis in HEP:
How do you formulate your p.d.f. in ROOT

— For ‘simple’ problems (gauss, polynomial) this is easy

— But if you want to do unbinned ML fits, use non-trivial functions, or work with
multidimensional functions you quickly find that you need some tools to help you

g

Evongu 1{0.2)

% &

¢ The RooFit project started in 1999 for data modeling needs for
BaBar collaboration initially, publicly available in ROOT since 2003



RooFit core design philosophy

e Mathematical objects are represented as C++ objects

Mathematical concept

variable X

function f(X)
PDF f (x)

space point 5(,:

integral ff(x)dx

list of space pomts

RooFit class

RooRealVar

RooAbsReal

RooAbsPdf

RooArgSet

RooRealIntegral

RooAbsData

Wouter Verkerke, NIKHEF



Data modeling — Constructing composite objects

e Straightforward correlation between mathematical representation
of formula and RooFit code

Math

RooFit
diagram

RooFit
code

gauss(x,m,s)

® RooGaussian g

P BN

@ RooRealVar x RooRealVar m RooFormulaVar sqrts @

OO

@

3 RooRealVar s

“ » » »

RooRealVvVar x( x , x ,-10,10) ;

RooRealVar m(“m”, mean”,0) ;

RooRealVar s(“s”,”sigma”,2,0,10) ;
RooFormulaVar sqrts(“sqrts”,”sqrt(s)’,s) ;
RooGaussian g(“g’, gauss’ ,x,m,sqrts) ;
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' ' ' New feature for LHC
RooFit core design philosophy 2V USELTS 1ol

e A special container class owns all objects that together build a
likelihood function

Math Gauss(X,,6)

RooWorkspace (keeps all parts together)

RooGaussian

RooFit
diagram

RooRealVar x RooRealVar m RooRealVar s

RooFit

RooRealVvVar X (“x”,”x”,-10,10) ;
code

RooRealVar m(“m ”,”y”,O,—lO,lO) ;
RooRealVvVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,S) ;
RooWorkspace w(“w”) ;

w.import(g)
Wouter Verkerke, NIKHEF



Populating a workspace the easy way — “the factory”

e The factory allows to fill a workspace with pdfs and variables using
a simplified scripting language

Gauss(x,u,6)
Math New feature for LHC

RooWorkspace

RooAbsReal £

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit

code
RooWorkspace w(“w”) ;

w.factory (“Gaussian::g(x[-10,10] ,m[-10,101,2[3,0.1,10]1)") ;



Model building — (Re)using standard components

e RooFit provides a collection of compiled standard PDF classes

RooArgusBG ¢

RooGaussian

<1 Physics inspired
ARGUS, Crystal Ball,

RooPolynomialE Breit-Wigner, Voigtian,
/ B/D-Decay,....

RooBMixDecayE

RooHistPdfif |—|

| Non-parametric
Histogram, KEYS

4 6 8 10

7T 8 9 U
| Basic

4%  Gaussian, Exponential, Polynomial,...
Chebychev polynomial

IFETRI RTRTH ININ]
275.285.29 5x.:

Easy to extend the library: each p.d.f. is a separate C++ class



Model building — (Re)using standard components

e |ibrary p.d.f.s can be adjusted on the fly.
— Just plug in any function expression you like as input variable

— Works universally, even for classes you write yourself

o%::z ‘;: L0025 i ' !'; '
il ) auel S
L
z“” ) |:> é: o001 %%’/}"I;’#%!![IJI%’,” ;;A\%
0015~ %1 | ’ \\ \
0.01F °‘|: 0005j fl;f’ ” '?' Ii’ I , Q\ﬁ\\
0'005‘_ Ll Leveliinlinnlil 2'55 %.5 “"""’ "’}' " “
%5 5 4 2 0 2 4 6 8 10 0 2 "'r f.f

g(x;m,s) m(y;ag,a;)

RooPolyVar m(“m”,y, RooArgList(aO,al)) ; g(x,y;a ,d 15)

RooGaussian g(“g”,”gauss”,x,m,s) ;

e Maximum flexibility of library shapes keeps library small

Wouter Verkerke, NIKHEF



From empirical probability models to simulation-based models

e | arge difference between B-physics and LHC hadron physics is
that for the latter distributions usually don’t follow simple analytical
shapes

Unbinned analytical (Geant) Simulation-driven
probability model binned template model
3 2 120 \s-8TeV,[Ldt=58fb" [ [HSngeTop
En ; L * ) B Z+ets [] Wiets ]
*g 1 OO} H->WW —evuv/uvev + 0/1 jets [ H[125GeV] {
@bt ;

60—

40~

20 -4

C g — ]
% 150 200 250 300
my [GeV]

e But concept of simulation-driven template models can also extent
to systematic uncertainties. Instead of empirically chosen
‘nuisance parameters’ (e.g. polynomial coefs) construct degrees
of freedom that correspond to known systematic uncertainties

Wouter Verkerke, NIKHEF



The HEP analysis workflow illustrated

Simulation of ‘soft physics’ Simulation of ATLAS |—C data
physics progess ¢ :

Soft Theory
ungej;;_falmles

Simulation of high-energy
physics process

rd Th 7 P(m,|SM[m,])

Reconstruction
of ATLAS detector

\
—— —— T
F e Data A LAS
250 [l Background 7"’
L [ Background Z+jkts,

Ho¥z" a1

Events/5 GeV

1501s =

sooanasy
5

Analysis Event selection

100 150 200

250
m,, [GeV]



Modeling of shape systematics in the likelihood

e [ffect of any systematic uncertainty that affects the shape of a
distribution can in principle be obtained from MC simulation chain

— Obtain histogram templates for distributions at ‘+10’ and ‘-1¢’
settings of systematic effect

“Jet Energy Scale”
10’ ‘nominal’
£ 2 a2
QIOO— Qo0 é‘ :
2 : S r o |
£ §r oo
S 5 T 5 -
-,5_.80_ '%80— .5 B
(53 B o ~ 6 -
'% | L .%80—
o [ L D‘: .
60— 60— C
i i 60—
40 40 L
- - 40_
20— 20— 20—
[ NEWE WS W R N E T N _|||I|||I|||I||| [ W [ N N Ll [ NN 'E S W e N
% 82 64 86 86 90 92 94 96 98 100 80 82 64 86 88 90 92 94 96 98 100 QG 82 84 86 86 90 92 94 96 98 100
X X X

e (Challenge: construct an empirical response function based on
the interpolation of the shapes of these three templates.
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Need to interpolate between template models

Projection of hsig_plus
& D o o
=] o o o

n
o

e Need to define ‘morphing’ algorithm to define
distribution s(x) for each value of a

S(X)la=-1

| | | |

txp‘l

s Lo by Lo Lo ey
0 82 84 8 88 90 9

s e Lo Loy
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Visualization of bin-by-bin linear interpolation of distribution
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Example 2 : binned L with syst

e Example of template morphing
systematic in a binned likelihood

s)+a(sf=s') Va>0
s(a,...)= . .
s;+a-(s;—-s;) Va<0

Visualization of bin-by-bin linear interpolation of distribution

L(N1a,57,5°5") = | [ PN/ 15,(00.s757,57)) GO v, 1)

bins

// Import template histograms in workspace
w.import(hs O0,hs p,hs m) ;

// Construct template models from histograms
w.factory (“HistFunc::s_0(x[80,100] ,hs_0)") ;
w.factory (“"HistFunc::s_p(x,hs p)”) ;
w.factory (“HistFunc::s _m(x,hs m)"”) ;

// Construct morphing model

w.factory(“"PiecewiselInterpolation::sig(s_0,s_,m,s p,alpha[-5,5])")

// Construct full model

w.factory (“"PROD: :model (ASUM(sig,bkg,£f[0,1]) ,Gaussian(0,alpha,l))”) ;




Events / 10 GeV

Events / 10 GeV

The structure of an (Higgs) profile likelihood function

e | ikelihood describing Higgs samples have following structure

H—>X('x|‘u’8)_ H hyS(X|‘u’H) H Lcontrol(XIlu’H) Lsub(g) Lsub(e) ..... Lsub(Hn)

i=0...n

wwwww

Strength of Constraint 0,
Systematic 3

uncertainties

v

‘Constraint 0,

ﬁantrol mgmﬁ? 2

40_ H->WW' '—evuv/pve

B irol rag&m 1

E H—>WW —eVILV/Lve

Events / 10 GeV

/ /,,

50 100 150 200 250 300
mr [GeV]
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Events / 10 GeV

Events / 10 GeV

The structure of an (Higgs) profile likelihood function

e A simultaneous fit of physics samples and (simplified) performance measurements

H—>X(’x|‘u’6) H PhyS(X|‘u’8) HLcontrol('xllu’H) Lsub(H) Lsub(e) ..... Lsub(gn)

i=0...n

\\\\\\\\\\\\\\\\\\\\\\\ ‘Subsi*ary
asurement n’
‘Simplified Likelihood of  Factqrization scale
a measurement related -

t@ systematic uncertainties’

: / ‘Subsidiary idiary
measurement 1’ measurement 2’

Qﬁjlir@l ran&m 1 'ﬁemr'al mggmiz Jet Energy scal¢'_B-tagging eff

40_ H->WW' '—evuv/uve

Events / 10 GeV

e,

50 100 150 200 250 300
mr [GeV]




The Workspace



The workspace

e The workspace concept has revolutionized the way people share and
combine analysis

— Completely factorizes process of building and using likelihood functions

— You can give somebody an analytical likelihood of a (potentially very complex)
physics analysis in a way to the easy-to-use, provides introspection, and is easy to
modify.

PN
4 N\

/ RoohckPaf \]

s/

o Gl w.import (sum) ;

’," glfrac g2frac

\ w.writeToFile (“model.root”) ;
RooRealVar //— -\\
cutoff

RooWorkspace w(“w”) ;

/ R / o\ /
RooGaussian /' RooGaussian /" RooArgusBG

\L gauss2 A \‘\ gauss! / \ argus

RooRealVar RooRealVar RooRealVar ( RooConstVar )

L 0.50000 /
\ rd

S

mean] X

argpar

model.root

Rookeatvar ) ( FooRealver
zwrac/ J/ \\22"
N//L,%AW L\ S
G (e () T () () 15":?;:::;:1)
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Using a workspace

// Resurrect model and data

TFile f(“model.root”) ;
RooWorkspace* w = f£.Get (“w”) ;
RooAbsPdf* model = w->pdf (“sum”) ;
RooAbsData* data w->data (“xxx") ;

ROOWOI‘kSpaCG // Use model and data

model->fitTo (*data) ;
RooPlot* frame =
w->var (“dt”) ->frame () ;

data->plotOn (frame) ;
model->plotOn (frame) ;

. 1000|-
N "
( RoofddPdf ) c
\ / @ L
N 800
— . / N 600
(i I

Rooﬁausswn ) RooGaussxan \

\ gauss? ausst ,’
\ € / \ g /

400[

,\ /J { ) )
K‘
RooRea]Var RooRealVar “ RooRealVar RooRealVar | RooRealVar A/ RooRealVar RooConstVar )

\NejQ/ sigia  / @1/ \—/ cutoff ,) @ﬁ/) \ 0,500000 ,'

Wentée Meardie NNIKHEF




The idea behind the design of RooFit/RooStats/HistFactory

e Step 1 — Construct the likelihood function L(x|p)

RooWorkspace w(“w”) ;
w.factory(“Gaussian::sig(x[-10,10],m[0],s[11)") ;
w. factory(“Chebychev::bkg(x,al[-1,1]1)") ;
w.factory(“SUM: :model (fsig[0,1]*sig,bkg)”) ;
w.writeToFile(“L.root”) ;

Complete description
of likelihood model,
persistable in ROOT file
ROOWOrkSpaCG (Roofit pdf function)

Allows full introspection
and a-posteriori editing

e Step 2 - Statistical tests on parameter of interest p

RooWorkspace* w=TFile::0pen(“L.root”)->Get(“w”) ;
RooAbsPdf* model = w->pdf(“model”) ;
pdf->fitTo(data) ;

Wouter Verkerke, NIKHEF



Example RooFit component model for realistic Higgs analysis

Likelihood model describing the
// invariant mass distribution

including all possible systematic
uncertainties

— RooFit
"—_ Workspace

L L B ms S s s s s s
* Data ATLAS

L Background zZ" ”

~ Il Backgrou . HozZ"sa

C .Background Z+jets, tt
o |:|Signal (m =125 GeV)
T % Syst.Unc.

[Vs=7TeV:|Ldt= 481" }

N
[¢)]
T

Events/5 GeV
N

o

|

-
[¢)]

[\s=8TeV:[Ldt=5.8fb"

10—
5
0:
100 150 200 250
m,, [GeV]
variables

e

function objects

Graphical illustration of function
components that call each other




Events/5 GeV

Analysis chain identical for highly complex (Higgs) models

e Step 1 — Construct the likelihood function L(x|p)

[ [ Background 22"

; [ Background Z+jets, i
r l:’ Signal (m =125 GeV)

[ % Syst.Unc.
[is=7TeV:Ldt=4.8 fo’
[is=8TeV:|Ldt=58 b’ \

\\\\\\\\\\\\\\\\

HozZ" e ]

e Step 2 - Statistical tests on parameter of interest p

RooWorkspace

4

Complete description
of likelihood model,
persistable in ROOT file
(RooFit pdf function)

Allows full introspection
and a-posteriori editing

RooWorkspace* w=TFile::0Open(“L.root”)->Get(“w”) ;
RooAbsPdf* model = w->pdf(“model”) ;
pdf->fitTo(data,

GlobalObservables(w->set(“MC_G10bs™),
Constrain(*w->st(“MC_NuisParams”) ;

er Verkerke, NIKHEF




Workspaces power collaborative statistical modelling

e Ability to persist complete!) Likelihood models
has profound implications for HEP analysis workflow

— (*) Describing signal regions, control regions, and including nuisance
parameters for all systematic uncertainties)

e Anyone with ROOT (and one ROOT file with a workspace)
can re-run any entire statistical analysis out-of-the-box

— About 5 lines of code are needed
— Including estimate of systematic uncertainties
e Unprecedented new possibilities for cross-checking results,
iIn-depth checks of structure of analysis

— Trivial to run variants of analysis (what if ‘det Energy Scale uncertainty’ is 7%
instead of 4%). Just change number and rerun.

— But can also make structural changes a posteri. For example, rerun with
assumption that JES uncertainty in forward and barrel region of detector are
100% correlated instead of being uncorrelated.

Wouter Verkerke, NIKHEF



Collaborative statistical modelling

e As an experiment, you can effectively build a library of
measurements, of which the full likelihood model is
preserved for later use

Already done now, experiments have such libraries of workspace files,
Archived in AFS directories, or even in SVN....

Version control of SVN, or numbering scheme in directories allows for easy
validation and debugging as new features are added

e Building of combined likelihood models greatly simplified.

Start from persisted components. No need to (re)build input components.

No need to know how individual components were built, or are internally
structured. Just need to know meaning of parameters.

Combinations can be produced (much) later than original analyses.

Even analyses that were never originally intended to be combined with
anything else can be included in joint likelihoods at a later time

Wouter Verkerke, NIKHEF



Higgs discovery strategy — add everything together

H-=>ZZ->1l

£ YL

define search for each of the
major Higgs decay channels
(H>WW, H2ZZ, H-21T etc).

Qutput is physics paper or note,
and a RooFit workspace with the
full likelihood function
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A small dedicated team of specialists builds a combined likelihood from the inputs.
Major discussion point: naming of parameters, choice of parameters for systematic
uncertainties (a physics issue, largely)




The benefits of modularity

e Technically very straightforward to combine measurements

RooFit, or RooFit+HistFactory

RooWorkspace

RooWorkspace

Higgs channel 1

Insertion of
combination
step does not
modify workflow
before/after
combination step

Combiner

RooWorkspace

RooStats

Higgs channel 2

Lightweight
software tool
using RoofFit
editor tools
(~500 LOC)

Higgs
Combination

Wouter Verkerke, NIKHEF



Workspace persistence of really complex models works too!

—T

SO
A

Atlas Higgs combination model (23.000 functions, 1600 parameters)

Model has ~23.000 function objects, ~1600 parameters

Reading/writing of full model takes ~4 seconds
ROOQOT file with workspace is ~6 Mb



With these combined models the Higgs discovery plots were produced...
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More benefits of modularity

e Technically very straightforward to reparametrize measurements

RooFit, or RooFit+HistFactory

Standard
Higgs combination

Reparametrization
step does not
modify workflow

BSM
Higgs combination

RooWorkspace

Reparametrize

RooWorkspace

RooStats

Lightweight
software tool
using RooFit
editor tools

Wouter Verkerke, NIKHEF
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An excursion — Collaborative analyses with workspaces

e How can you reparametrize existing Higgs likelihoods in practice?

e \Write functions expressions corresponding to new parameterization

kg * Ko (Kp, Ky)

0.75 - %2 +0.25 - k2

~_-

w. factory(“expr: :mu_gg_func(‘ (KF2*%Kg2)/
(0.75*KF2+0.25*KV2)’,
KF2,Kg2,KV2) ;

o(gg — H)* BR(H-vyy) ~

e |mport transformation in workspace, edit existing model

w.import(mu_gg_func) ;
w.factory(“EDIT: :newmodel (model,mu_gg=mu_gg_gunc)”) ;

Wouter Verkerke, NIKHEF



HistFactory

K. Cranmer, A. Shibata, G. Lewis, L. Moneta, W. Verkerke (2010)



HistFactory — structured building of binned template models

e RooFit modeling building blocks allow to easily construct
likelihood models that model shape and rate systematics with
one or more nuisance parameter

— Only few lines of code per construction

e Typical LHC analysis required modeling of 10-50 systematic
uncertainties in O(10) samples in anywhere between 2 and 100
channels > Need structured formalism to piece together
model from specifications. This is the purpose of HistFactory

e HistFactory conceptually similar to workspace factory, but has
much higher level semantics

— Elements represent physics concepts (channels, samples, uncertainties and
their relation) rather than mathematical concepts

— Descriptive elements are represented by C++ objects (like roofit),
and can be configured in C++, or alternively from an XML file

e HistFactory builds a RooFit (mathematical) model
from a physics model.

Wouter Verkerke, NIKHEF



HistFactory elements of a channel

e Hierarchy of concepts for description of one measurement channel

Channel
Name

InputFile
HistoPath
HistoName

Data
InputFile
HistoPath
HistoName

StatErrorConfig

RelErrorThreshold |

ConstraintType

Beeston-Barlo

Sample
Name
InputFile
HistoName
HistoPath

> T T T T
o 140 - Data %% SM(sys ®stat)
(cD> ATLAS mww [ wzzziwy .
2 120 \s=8TeV,| Ldt=58fb" [J#  [DSngeTop
~ ® Bl Z+jets [] WH+ets ]
2 00 H->WW —evuv/uvev + 0/1 jets [CJH[125GeV] 7
2 + :
L i
80 -
60 + i ]
7] ]
“ %y ]
40 L2 =
20 ] _:
__b__‘ - , :
q - =

100 150 200 250 300

my [GeV]

NormalizeByTheory

Ite

& statistical unsertainte

StatError
Activate
HistoName
InputFile
HistoPath

-

HistoSys /|  OverallSys ShapeSys
Name Name Name
INputFile High HistoName
HistoFileHigh Low HistoPath
HistoPathHigh InputFile
HistoNameHigh ConstraintType
HistoFileLow
HistoPathLow
HistoNameLow

NormFactor
Name
Val
High
Low
Const

ShapeFactor
Name

(Theory) sample
normalization

Template morphing shape systematic

Wouter Verkerke, NIKHEF



HistFactory elements of measurement

e (One or more channels are combined to form a measurement

— Along with some extra information (declaration of the PQOI, the luminosity of the
data sample and its uncertainty)

] Measurement
Name
Lumi
LumiRelErr
ExportOnly
> . .
& "} aras o @i POI ParamSetting ConstraintTerm
2 12¢- seaTevfia-sem’ O, Bewew Val Type
2 Howw evuviaver + O/ ets Oiniscen . .
5 Const RelativeUncertainty
Channel w
Name.
friseied 6 1 1t
HatoName . 4 >
H 8 ATLAS -l
2 2 12g- seaTev[ia-sem’ =F
_ 2. N—:WW’«vu\'u\'u\'w»ﬂ‘!Ms
e e, — 100 150 200 250 300 &
HistoPath ConstraintType InputFile my (GeV] Channel
HistoName HistoName Name
HistoPath InputFile e
Nomai HsoPan
HstoName
] g > 4
Beeston-Barlow-lit statjstica) uncertainti
2
StatError HistoSys OveraliSys ‘ShapeSys NormFactor ‘ShapeFactor .,
Actvate Name Name Name. Name Namo. Data StatErorcontiy Sample
HistoName INputFile High HstoName Val InputFile RelErorThreshold ‘Name. 100 150 200 250 300
InputFle HistoF etig Low HistoPai High HistoPath ConstrainType InputFile my [GeV]
HistoPath HistoPathHigh hwﬂlw c::s . HistoName r:m
Constraint 14 —
st § ATLAS] o
" " 2 12d- \sesTev [Latasan’ s
—=—m= ITemplate morphing shape systematic P :,:;;v “ ”mo‘ . e Beeston-Barlow-lit statjsfical/ uncertainti
evuvipvey + 01 jeis
s
pew—" @ . StatError. HistoSys OveraliSys ShapeSys NormFactor ShapeFactor
‘Name Activate w':::-. N;: Nm:m uvu‘-ln Name
oo g 6 e InputFile HistoileHigh Low HistoPath Figh
Hsioname 4 + Hocre, ——— Comvabte ot (Theory) sample normalization
HistoFileLow
HistoPathLow
2 Heonemetow_] Template morphing shape systematic
it :;‘::mc?m"" Em"‘“ 100 150 200 250 300
HstoPat Constaint inputFie
HetoName = Hehame my (GeV]
HstoPath
Normal Theor
Beeston-Barlow-lit statjstica) uncertainti
StatError HistoSys Overalisys ShapeSys. NormFactor ShapeFactor
Activate Name Name Name Name Name
HistoName INputFile High HistoName Val
InputFile HistoFleHigh Low HistoPath High
HistoPath HistoPat h InputFile Low . 2
e Conmantipe Conet (Theory) sample normalization
HistoFileLow
HistoPathLow
Haohemetow_] Template morphing shape systematic

Once physics model is defined, one line of code will turn it into a RooFit likelihood
Wouter Verkerke, NIKHEF




How is Higgs discovery different from a simple fit?

Gaussian + polynomial

Events /(0.2)
E &
T T l

I§I|l

rrTT

ROOT TH1 ROOT TF1

L(N | ,u,é) = HPoisson(Ni If(xi,u,é)
‘inside ROOT” i

¥

Maximum Likelihood estimation of
parameters y,0 using MINUIT
(MIGRAD, HESSE, MINOS)

V¥

u=53=+1.7

Likelihood Model
orders of magnitude more
complicated. Descri

syst. uncertainties

LN, N, Ny | 14,0) = n Poisson(N,,...) I_I Poisson(N,,,...) H Poisson(N\y,...) ..

. B

Frequentist confidence interval
construction and/or p-value
calculation not available

as ‘ready-to-run’ algorithm

in ROOT

Wouter Verkerke, NIKHER



RooStats

K. Cranmer, L. Moneta, S. Kreiss, G. Kukartsev, G. Schott, G. Petrucciani, WV - 2008



The benefits of modularity

e Perform different statistical test on exactly the same model

RooFit, or RooFit+HistFactory

RooWorkspace

“Simple fit” RooStats RooStats RooStats

(MLFit with — (Frequentist  (Frequentist Bayesian

HBEISNSOES(;r with toys) asymptotic) MCMC

Wouter Verkerke, NIKHEF



Maximum Likelihood estimation as simple statistical analysis

e Step 1 - Construct the likelihood function L(x|p)

RooWorkspace w(“w”) ;
w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”;
w. factory(“Chebychev::bkg(x,al[-1,1]1)") ;
w.factory(“SUM: :model(fsig[0,1]*sig,bkg)”) ;
w.writeToFile(“L.root”) ;

RooWorkspace

e Step 2 - Statistical tests on parameter of interest p

RooWorkspace* w=TFile::0Open(“L.root”)->Get(“w”) ;
RooAbsPdf* model = w->pdf(“model”) ;
pdf->fitTo(data) ;

Wouter Verkerke, NIKHEF



The need for fundamental statistical techniques

Frequentist statistics  Bayesian statistics Maximum Likelihood

- U o

= LINIw o | Jrmp
Ay(N,,) TN 1d) P(u)ox L(x|u)-mw(u) dlnL(p)

-
(=]
S

f(ajﬂl;l:O)

.NQ assumptions

erved va

JJJJJJJJ

or ‘asymptotic validit
for high statistics

Test Statistic ﬁu

-, W

Confidence interval Posterior on s S=x+y
or p-value or Bayes factor

@)
Nudber of toys

Wouter Verkerke, NIKHEF



But fundamental techniques can be complicated to execute...

e Example of confidence interval calculation with Neyman construction

Need to construct ‘confidence belt’ using toy MC. Intersection observed data with
belt defined interval in POl with guaranteed coverage

_ L(x|
X=3.2 tu(X’U) =-2 log(—‘lf)
17 IR N RE=====3 L 17 ! IR . L('X|M)
— = . - I ]
D sk = A D6 =
0 = O = .
c sk = - &= s == ~
@® = ] © = ]
C% 4 - = . E 4 i
o = . o :
E B E
- , = N
e N T i

observable x Likelihood Ratio

Expensive, complicated procedure, but completely procedural

once Likelihood and parameter of interest are fixed
- Can be wrapped in a tool that runs effectively ‘out-of-the-box’

Wouter Verkerke, NIKHEF



Running Roostats interval calculations ‘out-of-the-box

Confidence intervals calculated with model

— ‘Simple
Fit’

— Feldman
Cousins
(Frequentist
Confidence
Interval)

— Bayesian
(MCMCQ)

RooAbsReal* nl1 = myModel->createNLL(data) ;
RooMinuit m(*nl1l1) ;

m.migrad() ;

m.hesse() ;

FeldmanCousins fc;
fc.SetPdf(myModel);

fc.SetData(data); fc.SetParameters(myPOU);
fc.UseAdaptiveSampling(true);
fc.FluctuateNumDataEntries(false);

fc.SetNBins(100); // number of points to test per parameter
fc.SetTestSize(.1);

ConfInterval* fcint = fc.GetInterval(Q;

UniformProposal up;

MCMCCalculator mc;

mc.SetPdf(w::PC);

mc.SetData(data); mc.SetParameters(s);
mc.SetProposalFunction(up);
mc.SetNumIters(100000); // steps in the chain
mc.SetTestSize(.1); // 90% CL

mc.SetNumBins(50); // used in posterior histogram
mc.SetNumBurnInSteps(40);

ConfInterval®* mcmcint = mc.GetInterval (Q;



But you can also look ‘in the box’ and build your own

!
Tool to calculate p-values for a given hypothesis f f(q u | ' )dq p

qy,obs
// create first HypoTest calculator (N.B null is s+b model)
FrequentistCalculator fc(*data, *bModel, *sbModel) ; f q | ﬂ
// configure ToyMCSampler and set the test statistics / U
ToyMCSampler *toymcs = (ToyMCSampler*)fc.GetTestStatSampler(); Tool to construct
ProfileLikelihoodTestStat profll (*sbModel->GetPdf ()) teSt S'ta'tlS'tIC
// for CLs (bounded intervals) use one-sided profile Ii ihood . . .
profll.SetOneSided (true) ; distribution

toymcs->SetTestStatistic (&profll) ; '
9, (1)
The test statistic

to be used for
the calculation

HypoTestInverter calc(*fc)
calc.UseCLs (true) ;

// configure and run the scan
calc.SetFixedScan (npoints,poimin,poimax) ;
HypoTestInverterResult * r = calc.GetInterval()

// get result and plot it

double upperLimit = r->UpperLimit () ; Of p—ValueS
double expectedLimit = r->GetExpectedUpperLimit (0) ;

HypoTestInverterPlot *plot = new HypoTestInverterPlot("hi","",r); TOOl tO ConStrUCt
plot->Draw () ; interval from

Offset advanced control over details of statistical hypo test results

procedure (use of CLS, choice of test statistic, boundaries...)



RooStats class structure

Wouter Verkerke, NIKHEF



Summary

e RooFit and RooStats allow you to perform advanced statistical data

analysis

— LHC Higgs results a prominent example

e RooFit provides (almost) limitless
model building facilities

— Concept of persistable model workspace allows to E

separate model building and model interpretation

— HistFactory package introduces structured model
building for binned likelihood template models that
are common in LHC analyses

e (Concept of RooFit Workspace has
completely restructured HEP analysis
workflow with ‘collaborative modeling’

e RooStats provide a wide set of statistical
tests that can be performed on RooFit
models

— Bayesian, Frequentist and Likelihood-based test
concepts

{ /7 V;

| ¥

L “ [
X 7

71y

al

ATLAS

Wouter Verkerke, NIKHEF
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Modeling 1

Systematic uncertainties,
“Profile Likelihood”:

Counting models
with nuisance parameters



Most statistics textbooks deal with the ideal experiment

e The “only thing” you need to do (as an experimental physicist) is to
formulate the likelihood function for your measurement

e F[or an ideal experiment, where signal and background are
assumed to have perfectly known properties, this is trivial

L(N lu) =

n Poisson(N, I@Ei +b,)

bins

ok

B g G et e

o b b b b b b b IS Ly

%O 82 84 86 88 90 92 94 96 98 100
X

e So far only considered a single parameter in the likelihood:
the physics parameter of interest, usually denoted as u

Wouter Verkerke, NIKHEF



The imperfect experiment

¢ |n realistic measurements many effect that we don’t control
exactly influence measurements of parameter of interest

e How do you model these uncertainties in the likelihood?

Signal and background predictions
are affected by (systematic) uncertainties

Wouter Verkerke, NIKHEF



Adding parameters to the model

e \WVe can describe uncertainties in our model by adding new
parameters of which the value is uncertain

L(Nlu)= nPoisson(Ni lu-s; + l;l.)

\ bins

@ ~ [
o 120 S L
@ 2 s0F
[ = — =4 =
2 100 & r
B 40
80 C
- 30F

60
40 20
20 10
R n 1! + y
A R PN B L c

%;' ' 'el?_' ' 's|4' ' 'sls' 88 90 92 94 96 98 '1)90 910 '8" & _4 . 02 ] r;'r ; -
L(x|f,m,0,a,,q,,a,)= fG(x,m,0)+(1- f)Poly(x,a,,a,,a,)
e These additional model parameters are not ‘of interest’, but we

need them to model uncertainties = ‘Nuisance parameters’

Wouter Verkerke, NIKHEF



What are the nuisance parameters of your physics model?

e Empirical modeling of uncertainties, e.g. polynomial for background,
Gaussian for signal, is easy to do, but may lead to hard questions

Events /(0.2
o
o
T

N
o

Il %
-10 -8 -6 4 -2 0 2 4 6 8 10

L(xIf,m,a,ao,al,az)=fG(x,m,G)-;-(l—f)Poly(x,aO,al,az)

e s your model correct? (Is true signal distr. captured by a Gaussian?)
e |s your model flexible enough? (4 order polynomial, or better 6t)?

e How do model parameters connect to known detector/theory
uncertainties in your distribution?

— what conceptual uncertainty do your parameters represent?

Wouter Verkerke, NIKHEF



The simulation workflow and origin of uncertainties

Simulation of *soft ph Simulation of ATLAS |—C data
phyS|cs prog.ess ,0 | —~

Simulation of high—ener%
physics process @

- Reconstruction

@)
o = of ATLAS detector

E [ e IDala I A71LAS ] 8
© 25:— [ Background zz") o720 sal _: D
g r [ Background Z+jets, (%))
g’ 20-_ |:| Signal (mH=125 GeV) 4
= 7 Syst.Unc. GC)
15018 = 7 TeV: Lt = 4.8 fo” Lﬁ
[\s=8TeV:/Ldt = 5.8 fb” 0
10f 4
=
@®
C
<

o\AMortar \/orl [
100 150 200 vOutor vOol r\Ull\U, NI T

m, [Ged] Wouter Verkerke, NIKHE,




Typical systematic uncertainties in HEP

e Detector-simulation related
— “The Jet Energy scale uncertainty is 5%”

—  “The b-tagging efficiency uncertainty is 20% for jets with p;<40”

e Physics/Theory related
— The top cross-section uncertainty is 8%

—  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the
difference the systematic uncertainty”

— “Evaluate the effect of using Herwig and Pythia and consider the difference
the systematic uncertainty”

e MC simulation statistical uncertainty

— Effect of (bin-by-bin) statistical uncertainties in MC samples

o\Nouter Verkerke, NIKHEF



What can you do with systematic uncertainties

e As most of the typical systematic prescriptions have no immediately
apparent parametric formulation in your likelihood, common approach
IS ‘vary setting, rerun analysis, observe the difference’

e This common ‘naive’ approach to assess effect of systematic
uncertainties amounts to simple error propagation

e Error propagation procedure in a nutshell

— Make nominal measurement (using your favorite statistical inference procedure)

— Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1
sigma’ up and down ) Redo measurement procedure for each shift

— Consider propagated effect of shifted setting the systematic uncertainty

_ up down
U=uW, ,= Gstat = (lusyst o lusyst )/ 2%...
[ | i J [ | i J

From statistical Systematic uncertainty
analysis from error propagation

o\Nouter Verkerke, NIKHEF



Pros and cons of the ‘naive’ approach

* Pros

It’s easy to do

It results in a seemingly easy-to-interpret table of systematics

« Cons

Uncorrelated source of systematic uncertainty can have correlated effect on
measurement - Completely ignored

Magnitude of stated systematic uncertainty may be incompatible with
measurement result > Completely ignored

You lost the connection with fundamental statistical techniques

(i.e. evaluation of systematic uncertainties is completely detached from
statistical procedure used to estimate physics quantity of interest) > No
prescription to make confidence intervals, Bayesian posteriors etc in this way

No calibrated probabilistic statements possible (95% C.L.)

e ‘Profiling’ = Incorporate a description of systematic uncertainties
in the likelihood function that is used in statistical procedures

o\Nouter Verkerke, NIKHEF



Everything starts with the likelihood

Frequentist statistics  Bayesian statistics Maximum Likelihood

- U o

= LINIw o | Jrmp
Ay(N,,) LV 1 0) P(u)ox L(x|u)-mw(u) dlnL(p)

4— ~
10° — 1@,_l=0)
— 1@_lu=1)

a3 Observed value

Number of toys
)

[P vt | I 1 . P
0 5 10 15 20
Test Statistic qa,

0

Confidence interval Posterior on s S=Xz%Y
or p_va|ue or BayeS factor o\\Nouter Verkerke, NIKHEF




Introducing uncertainties — a non-systematic example

e The original model (with fixed b)

o

o

©
I

o
o

Projection of p

g
o

e Now consider b to be uncertain
L(N|s) = L(N|s,b)

e The experimental data contains insufficient to constrain both
s and b = Need to add an additional measurement to constrain b

o\Nouter Verkerke, NIKHEF



The sideband measurement

Events /(0.5)
o
o

o
o

Suppose your data o
in reality looks like this =» 60

Can estimate level of background in the ‘signal region’ from event
count in a ‘control region’ elsewhere in phase space

3 NB: Define parameter ‘b’ to represents
LSR (S,b) = POlSSOl’l(NSR | S+ b) the amount of bkg is the SR.
LCR (b) = POiSSOn(NCR | ‘E . b) Scale factor T accounts for difference

in size between SR and CR

“Background uncertainty constrained from the data”

Full likelihood of the measurement (‘simultaneous fit’)

L, (s,b) = Poisson(N gy | s+b)- Poisson(N 1T b)



Generalizing the concept of the sideband measurement

e Background uncertainty from sideband clearly clearly not a
‘systematic uncertainty’

L, (s,b) = Poisson(N g | s+b)- Poisson(N, 1T b)
e Now consider scenario where b is not measured from a sideband,

but is taken from MC simulation with an 8% cross-section
‘systematic’ uncertainty

‘Measured background rate by MC simulation’

L., (s,b)= Poisson(Ng, | s +b) - Gauss b1b,0.08)

i
‘Subsidiary measurement’
of background rate

—  We can modéel this in the same way, because the cross-section uncertainty is
also (ultimately) the result of a measurement

Generalize: ‘sideband’ - ‘subsidiary measurement’

o\Nouter Verkerke, NIKHEF



What is a systematic uncertainty?

e (Concept & definitions of ‘systematic uncertainties’ originates from
physics, not from fundamental statistical methodology.

— E.g. Glen Cowans (excellent) 198pp book “statistical data analysis”
does not discuss systematic uncertainties at all

e A common definition is

— “Systematic uncertainties are all uncertainties that are
not directly due to the statistics of the data”

e But the notion of ‘the data’ is a key source of ambiguity:
— does it include control measurements?

— does it include measurements that were used to perform basic
(energy scale) calibrations?

o\Nouter Verkerke, NIKHEF



Typical systematic uncertainties in HEP

L DeteCtOF-SImU|aTIOﬂ I’e|ated Sub8|d|ary measurement
— “The Jet Energy scale uncertainty is 5%” is an actual measurement
. , - o . —> conceptually similar to
— “The b-tagging efficiency uncertainty is 20% a ‘sideband’ fit

for jets with p;<40”

e Physics/Theory related
Subsidiary measurement

_ _ 1 I I (0]
The top cross-section uncertainty is 8% unclear, but origin of

—  “Vary the factorization scale by a factor 0.5 prescription may well
and 2.0 and ponsider t_he difference be another measurement
the systematic uncertainty” (if yes, like sideband, if

— “Evaluate the effect of using no, what is source of info?)

Herwig and Pythia and consider the difference
the systematic uncertainty”

e MC simulation statistical uncertainty Subsidiary measurement
is a Poisson counting

experiment (but now in

MC events), otherwise
conceptually identical to

a ‘sidebandfitter Verkerke, NIKHEF

— Effect of (bin-by-bin) statistical uncertainties
in MC samples



Typical systematic uncertainties in HEP

e Detector-simulation related

— “The Jet Energy scale uncertainty is 5%”

“Tho htanninn offinrionmyvs 1 inecartaintyy ic 2004

Subsidiary measurement
is an actual measurement
—> conceptually to

Almost all systematic uncertainties are similar in nature
to ‘sidebands’ measurements of some form or shape

- Can always model systematics like sidebands

iNn the Likelihood

And even when the are not the (in)direct result of
some measurement (certainty theory uncertainties)

we can still model them in that form

U simulation statistical uncertainty

Effect of (bin-by-bin) statistical uncertainties
in MC samples

Subsidiary measurement

is a Poisson counting
experiment (but now in

MC events), otherwise
conceptually identical to

a ‘sidebandfitter Verkerke, NIKHEF



Modeling a detector calibration uncertainty
L, (s,b)=Poisson(N | s + b)-Gauss(I; 1 5,0.08) st Ve

[ 1 1 1 . ]
B0 82 84 86 88 9 92 94 9 98 100

¢ Now consider a detector uncertainty, e.g. jet energy scale
calibration, which can affect the analysis acceptance in a non-trivial
way (unlike the cross-section example)

Nominal calibration
Signal rate (our parameter of interest) \Assumed calibration

N

L(N,als,a) = Poisson(N | s + b(a ! é): 2))-Gauss(ala,0,)

I | \
Observed event count Uncertainty
on nominal
calibration
Response function (here 5%)
for JES uncertainty
(@ 1% JES change
results in a 2% “Subsidiary measurement”
acceptance change)  Encodes ‘external knowledge’

on JES calibration

Nominal background
expectation from MC
(a constant), obtained
with a=a



Modeling a detector calibration uncertainty

Y

e Simplify expression by renormalizing “subsidiary measurement

Signal rate (our parameter of interest)

\

L(N | s,a) = Poisson(N | s + b(1+0.1a)) Gauss(0 | at,1)

Observed event count / \
“Normalized

. subsidiary measurement”
Nominal background  Response function

expectation from MC  for normalized JES The scale of parameter

(a constant) parameter a is now chosen such that
! ugnt change in a values +1 corresponds to the
—abd% JESchange —  nominal uncertainty

still results in a 10% (In this example 5%)
accep’[aﬂce Chaﬂge]

o\Nouter Verkerke, NIKHEF



The response function as empirical model of full simulation

L(N,0ls,a)= Poisson(N |s+b(a)):Gauss(0la,l)
o

e Note that the response function is generally not linear, but can in
principle always be determined by your full simulation chain

— But you cannot run your full simulation chain for any arbitrary ‘systematic
uncertainty variation’ = Too much time consuming

— Typically, run full MC chain for nominal and 10 variation of systematic
uncertainty, and approximate response for other values of NP with interpolation

— For example run at nominal JES and with JES shifted up and down by +5%

o) Empirical approximation 1.1
9 | of true response Full MC result for JES at +5%
1.0
Full MC result for JES at

0.9

o\Nouter Verkerke, NIKHEF



What is a systematic uncertainty?

e |t is an uncertainty in the Likelihood of your physics measurement
that is characterized deterministically, up to a set of parameters,
of which the true value is unknown.

o A fully specified systematic uncertainty defines

— 1. A set of one or more parameters
of which the true value is unknown,

— 2: Aresponse model that describes the effect of those
parameters on the measurement
(sampled from full simulation, and interpolation)

— 3: A subsidiary measurement of the parameters
that constrains the values the parameters can take
(implies a specific distribution: Gaussian (default, CLT),
Poisson (low-stats counting), or otherwise)

o\Nouter Verkerke, NIKHEF



Names and conventions — ‘profiling’ & ‘constraints’

e The full likelihood function of the form

L(N,0ls,a)= Poisson(N |s+b(a)) Gauss(0la,1)

IS usually referred to by physicists as a ‘profile likelihood’, and
systematics are said to be ‘profiled’ when incorporated this way

— Note: statisticians use the word profiling for something else

¢ Physicists often refer to the subsidiary measurement as a
‘constraint term’

— This is correct in the sense that it constrains the parameter q, but this labeling
commonly lead to mistaken statements (e.g. that it is a pdf for Q)

— But itis not a pdf in the NP

Gauss& 10,1) Gauss(0l e, 1)

o\Nouter Verkerke, NIKHEF



Names and conventions

e The ‘subsidiary measurement’ as simplified form of the “full
calibration measurement’ also illustrates another important point
— The full likelinood is simply a joint likelihood of a physics measurement and a

calibration measurement where both terms are treated on equal footing in the
statistical procedure

— In a perfect world, not bound by technical modelling constraints
you would use this likelihood

L(N,¥1s,a) = Poisson(N | s+ b(1+0.1a))- L, (¥ ., 8)

where L g is the full calibration measurement as performed by the Jet
calibration group, based on a dataset y, and which may have other
parameters 6 specific to the calibration measurement.

e Since we are bound by technical constrains, we substitute L o
with simplified (Gaussian) form, but the statistical treatment and
Interpretation remains the same

o\Nouter Verkerke, NIKHEF



MC statistical uncertainties as systematic uncertainty

¢ Another example of modeling a systematic uncertainty:
MC statistical uncertainty

e [ollow same procedure again as before:

— Define response function (this is trivial for MC statistics:
it is the luminosity ratio of the MC sample and the data sample)

— Define distribution for the ‘subsidiary measurement’ — This is a Poisson
distribution — since MC simulation is also a Poisson process

— Construct full likelihood (‘profile likelihood’)

L(N,N,,-|s,b) = Poisson(N |s+b)- Poisson(N,,- | t-b)

Constant factor T = L(MC)/L(data)
e Note uncanny similarity to full likelihood of a sideband measurement!

L(N,N

ctl

| 5,b) = Poisson(N | s + b)- Poisson(N

ctl

|T-D)

o\Nouter Verkerke, NIKHEF



Modeling multiple systematic uncertainties

¢ |ntroduction of multiple systematic uncertainties presents no
special issues

e Example JES uncertainty plus generator ISR uncertainty

L(N,01s,0,,5,0t,) = P(N | s+ b(1+0.1a . +0.050,5,)) GOl €t 1) G(O |, 1)

I I I

Joint response function

, One subsidiary
for both systematics

measurement for each
source of uncertainty
e A brief note on correlations

—  Word “correlations” often used sloppily — proper way is to think of correlations
of parameter estimators. Likelihood defines parameters a g, Qigp.

The (ML) estimates of these are denoted &4,

— The ML estimators of &,,0 using the Likelihood of the subsidiary
measurements are uncorrelated (since the product factorize in this example)

— The ML estimators of &, using the full Likelihood may be correlated.
This is due to physics modeling effects encoded in the joint response function

o\Nouter Verkerke, NIKHEF



Modeling systematic uncertainties in multiple channels

e Systematic effects that affect multiple measurements should be
modeled coherently.

— Example - Likelihood of two Poisson counting measurements

L(N Ny 15,050)= PN, I+ f, +B,(140.1ct,5)) P(N; 15 f + by (1-0.301,))- G(O 1 et 5.1)-
| | I

JES response JES response  JES
function for function for  subsidiary
channel A channel B measurement

— Effect of changing JES parameter q g coherently affects both measurement.

— Magnitude and sign effect does not need to be same, this is dictated by the
physics of the measurement

o\Nouter Verkerke, NIKHEF



Statistics 1

treatment of nuisance
parameters in statistics
Inference

Wouter Verkerke, NIKHEF



The statisticians view on nuisance parameters

e |n general, our model of the data is not perfect

model: L(xz|0) = 0z
" truth:  L(2(0) = 6z + 0z + Bz + - - -

L (x|0)

e (Can improve modeling by including additional adjustable parameters

e (Goal: some point in the parameter space of the enlarged model
should be “true”

e Presence of nuisance parameters decreases the sensitivity of the
analysis of the parameter(s) of interest

o\Nouter Verkerke, NIKHEF



Treatment of nuisance parameters in parameter estimation

e |n POI parameter estimation, the effect of NPs incorporated
through unconditional minimization

— l.e. minimize Likelihood w.r.t all parameter simultaneously.

e Simple example with 2-bin Poisson counting experiment
L(s)= Poisson(101s+)5)

L
L(s,b) = Poisson(10 | s+ b)Poisson(1013-b)

a 10

Unconditional
minimum in s,b

Conditional
minimum in s
(condition: b=5)

~N o W

(=2}

_____________ (5,b)

111 l 1 1 1 l 11 l 1 1 1 I 1 1 1 l 111 I 1 1 1 l 11 1 l 111 l 1 1 1 .
2 4 6 8 10 12 14 16 18 20 Nouter Verkerke, NIKHEF
s
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Treatment of nuisance parameters in variance estimation

e Maximum likelihood estimator of parameter variance
is based on 2" derivative of Likelihood

— For multi-parameter problems this 2nd derivative is generalized
by the Hessian Matrix of partial second derivatives

6(p)° =T7(p)=(d lnLJ » 6(p) =Vp,)=(H™")

2
d'p

[ aZf 82f - .. a2f |
(;')17? a:lTl ()IQ 8:171 an
an an ..o an

H(f) = 8172.81:1 83.173 0xo 0z, |

>’ f of 0

| Oz, Oy O, O ox2 |

e For multi-parameter likelihoods estimate of covariance V; of pair
of 2 parameters in addition to variance of individual parameters

— Usually re-expressed in terms dimensionless correlation coefficients p

Vi =Py ViV

e\NNouter Verkerke, NIKHEF



Treatment of nuisance parameters in variance estimation

e FEffect of NPs on variance estimates visualized

Scenario 1 S io 2
Estimators of Est?rig?gg of
POl and NP correlated
6, 0{6 b0 POl and NP correlated
2 M l.e. p(s,b)=0

O*L 0L

R ~ 7 R 27 7! R PV R 2

V(s) from| 05 9 V(s) from [%l V(s) from| 5 00 V(s) from [%
oL 9L 5™ |5 L PL ds
dsob b’ dsob  ob*

Uncertainty on background increases uncertainty on signal
e\/\louter Verkerke, NIKHEF

11 11 1 1 111 11 | - | 1 1 | 111 | 11 I 111 11 | 11 /I 1 I 111 | 11 | - [ 1 \ ] 11
0 / 4 6 8 10 12 \14 16 18 20 2 4 /6 8 10 12 14 1 18 20
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0
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Treatment of NPs in hypothesis testing and conf. intervals

e \We've covered frequentist hypothesis testing and interval
calculation using likelihood ratios based on a likelihood with a
single parameter (of interest) L(u)

— Result is p-value on hypothesis with given p value, or

— Result is a confidence interval [u_,y,] with values of p for which p-value is at or
above a certain level (the confidence level)

e How do you do this with a likelihood L(u,08) where 6 is a nuisance
parameter?

— With a test statistics g, we calculate p-value for hypothesis 6 as

f(t )

tu,obs

p.= [/, |u0)dq,

9 u0bs

p-value

e But what values of 6 do we use for f(q,|1,0)? \
Fundamentally, we want to reject p only if p<a for all 6
- Exact confidence interval



Hypothesis testing & conf. intervals with nuisance parameters

e The goal is that the parameter of interest should be covered at the
stated confidence for every value of the nuisance parameter

e f there is any value of the nuisance parameter which makes the
data consistent with the parameter of interest, that value of the
POl should be considered:

— e.g. don’t claim discovery if any background scenario is compatible with data

e But: technically very challenging and significant problems with
over-coverage

— Example: how broadly should ‘any background scenario’ be defined? Should
we include background scenarios that are clearly incompatible with the
observed data?

o\Nouter Verkerke, NIKHEF, 92



The profile likelihood construction as compromise

e For LHC the following prescription is used:

KNPS
Given L(u,06)
POl
perform hypothesis test for each value of p (the POI),

using values of nuisance parameter(s) 6 that best fit the data
under the hypothesis U

¢ |ntroduce the following notation

Vo N
A M.L. estimate of 6 for a given value of u
6(//{) (i.e. a conditional ML estimate)

* The resulting confidence interval will have exact coverage for the
points (1,6(10))
— Elsewhere it may overcover or undercover (but this can be checked)

o\Nouter Verkerke, NIKHEF, 93



The profile likelihood ratio

e \With this prescription we can construct the profile likelihood ratio
as test statistic

o . Maximum Likelihood for given |
Likelihood for given |

-2 -

Maximum Likelihood Maximum Likelihood

e NB: value profile likelihood ratio does not depend on 6

o\Nouter Verkerke, NIKHEF, 94



Profiling illustration with one nuisance parameter

4.5

*
»”
v
»
-
.
ccccc
L]
-t
v
at
s
"

3.5

IR (2

11 IlIIIIIIIIlIIIIIIIIIIIIIIIIIlIIIIIIIIl
0 01 02 03 04 05 06 0.7 0.8

H
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Profile scan of a Gaussian plus Polynomial probability model

; Likelihood Ratio

M Profile Likelihood Ratio

Minimizes —log(L)
for each value of fy,

by changing bkg shape params

... 1 (a6™Morder Chebychev Pol)
(1] 0.05 0.1 0.1 0.2 0.25 0.3 0.35 04 0.45

(0.!‘

w 3 % 4 3 2 3 25
-

Everrta )




Profile scan of a Gaussian plus Polynomial probability model

; Likelihood Ratio

Interval on u widens M Profile Likelihood Ratio
due to effect of uncertain NPs

Minimizes —log(L)

for each value of fy,
------------ by changing bkg shape params
(a 6" order Chebychev Pol)

y'l""l

(0.!‘

w 3 % 4 3 2 3 25
-

Everrta )




PLR Confidence interval vs MINOS

7 """" LA L |

parameter u
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Asymptotically,
distribution is identical

for all p

parameter 6

Measurement = t, (X e,H)
is now a function of p
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NB: asymptotically, distribution
IS also independent of true
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Link between MINOS errors and profile likelihood

Parameter of interest

sg2

sg2

S ., Tl dg vl
34 36 38 4 42 44 46 48 5

i A
o 0 0 -

o~
11 jo udposfoad -

........
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et
"

Note that MINOS algorithm in
MINUIT gives same errors as
Profile Likelihood Ratio

— MINOS errors is bounding box st
around A(s) contour /
— Profile Likelihood = Likelihood i S S T

minimized w.r.t. all nuisance
parameters

NB: Similar to graphical interpretation of variance estimators, but those

0 w
rrrrrT

N
T

A T TR P P P B
0.2 03 04 05 06 0.7 0.8
H : frac

01 0.2 03 04 05 06 0.7 0.8 09
frac
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Summary on NPs in confidence intervals

e [Exact confidence intervals are difficult with nuisance parameters
— Interval should cover for any value of nuisance parameters
— Technically difficult and significant over-coverage common
e | HC solution Profile Likelihood ratio = Guaranteed coverage at
measured values of nuisance parameters only
— Technically replace likelihood ratio with profile likelihood ratio

— Computationally more intensive (need to minimize likelihood w.r.t all nuisance
parameters for each evaluation of the test statistic), but still very tractable

e Asymptotically confidence intervals constructed with profile
likelihood ratio test statistics correspond to (MINOS) likelihood
ratio intervals

— As distribution of profile likelihood becomes asymptotically independent of 6,
coverage for all values of 6 restored

o\\Nouter Verkerke, NIKHEF, 100



Dealing with nuisance parameters in Bayesian intervals

e Elimination of nuisance parameters in Bayesian interval: Integrate
over the full subspace of all nuisance parameters;

P(ul X);L(x | w)-(u)
P(ulx)e [ (L(x | M,é)ﬂ(u)n(é))dé

e You are left with posterior pdf for

| E
5_
K B i § [T
- A o _.‘ .03
L ( y 6) H z :
All G : 025
4.5_ 2 o .,- E E
- 3 G
* L r
C "'.‘ .': 5
- o K 00tsf-
L b ]
4 = o -~ 001
.... K3
________
............... 00
Lo e E ]
e oC | [ | u|
3.5p e T 3 2 4 0 1 2 3
.......... k
3

6040203 0.4 05 06 0.7 08 oy
Credible interval:
H area that integrates

X% of posterior



Computational aspects of dealing with nuisance parameters

e Dealing with many nuisance parameters is computationally
intensive in both Bayesian and (LHC) Frequentist approach
e Profile Likelihood approach

— Computational challenge = Minimization of likelihood w.r.t. all nuisance
parameters for every point in the profile likelihood curve

— Minimization can be a difficult problem,
e.qg. if there are strong correlations, or multiple minima

e Bayesian approach

— Computational challenge = Integration of posterior density of all nuisance
parameters

— Requires sampling of very potentially very large space.

— Markov Chain MC and importance sampling techniques can help, but still very
CPU consuming

o\Nouter Verkerke, NIKHEF



Other procedures that have been tried*

e Hybrid Frequentist-Bayesian approach (‘Cousins-Highland / Z)

— Integrate likelihood over nuisance parameters

L, ()= [ (L(u.6)7(0))d6

— Then treat integrated L, as test statistic = obtain p-value from its distribution

In practice integral is performed using MC integration, so often described as a
‘sampling method’ 1 — —~
L, () =— Y L(u,6,)7(6,)
N MC

— Method has been shown to have bad coverage

e Ad-hoc sampling methods of various types.

— Usually amount to either MC integration or fancy error propagation

Va\
Va\

Note that sampling the conditional estimator U
over sample of 6 values obtained from 1(6)

is just glorified error propagation!

0

e\/\louter Verkerke, NIKHEF
* But are known to have problems



How much do answers differ between methods?

A Prototype Problem ROGICIATEN,

What is significance Z of an observation x =/78 events in a
signal like region, if my expected background 5 =100 with a
10% uncertainty?

»if you use the ATLAS TDR formula Zs'=5.5
» if you use Cousins-Highland Zy=5.0

The question seems simple enough, but it is not actually
well-posed

»what do | mean by 10% background uncertainty?

Typically, we consider an auxiliary measurement y used to
estimate background (Type | systematic)

» eg: a sideband counting experiment where backgrouy
in sideband is a factor 7 bigger than in signal region

Lp(z,y|p,b) = Pois(x|p + b) - Pois(y|7b).

Example Sideband Measurement bcioste il

. >
Kyle Cranmer (BNL) PhyStat 2007, CERN, June 26,2007 Sldeband measurement used 8
to extrapolate / interpolate 20000 <y>
. . the background rate in 5 T = 7
These slide discuss signal-like region D0 $>
a ‘prototype’ likelihood i
that statisticians like: For now ignore uncertainty in ~ ** |7

extrapolation.

Poisson(Ng,|s+b) - Poisson(Ny[T-b)

sig

10000 L—1 — -
105 120 135

m (GeV)

NB: This is one of the very few
problems with nuisance parameters Lp(z,y|p,b) = Pois(z|p+ b) - Pois(y|Tb).
with can be exactly calculation

Kyle Cranmer (BNL) PhyStat 2007, CERN, June 26,2007 14




Recent comparisons results from PhyStat 2007

Comparison of Methods for Prototype Problem

BROOKHFIVEN

NATIONAL LABORATORY

In my contribution to PhyStat2005,
| considered this problem and
compared the coverage for several
methods

» See Linnemann’s PhyStatO3 paper

Major results:

» Cousins—Highland result (Zn)
badly under-covers (only 4.20)!

- rate of Type | error is 110 times
higher than stated!

- much less luminosity required

contours for b

wrue=100, critical regions for t = 1

=130

120 @® No Systematics
H zZ
110 L A Z,
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100 * b profile
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90 V¥V correct coverage
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Figure 7. A comparison of the various methods critical bound-
ary qrit(y) (see text). The concentric ovals represent con-
tours of Lg from Eq. 15.

Method L (Zo) | Lp (Zo) | zerie(y = 100)
No Syst 3.0 3.1 150
AT 4.1 4.1 171
ZN (Sec. 4.1) 4.2 178
|| ad hoc_ 4.6 4.7 188 Exart
1 | [Z =25 1.9 5.0 185 ] solytion
I | profile A\p 5.0 5.0 185
! profile Aq 4.7 4.7 ~182

Kyle Cranmer (BNL)

Statistics Forum, May 11,2007




Summary of statistical treatment of nuisance parameters

e [Each statistical method has an associated technique to propagate
the effect of uncertain NPs on the estimate of the POl

— Parameter estimation = Joint unconditional estimation
— Variance estimation - Replace d?L/dp? with Hessian matrix
— Hypothesis tests & confidence intervals - Use profile likelihood ratio

— Bayesian credible intervals = Integration (‘Marginalization’)

e Be sure to use the right procedure with the right method
— Anytime you integrate a Likelihood you are a Bayesian
— If you are minimizing the likelihood you are usually a Frequentist

— If you sample something chances are you performing either a (Bayesian)
Monte Carlo integral, or are doing glorified error propagation

e Answers can differ substantially between methods!

— This is not always a problem, but can also be a consequence of a difference in
the problem statement

o\Nouter Verkerke, NIKHEF



