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Roadmap of todays course


•  Software 1 –  Overview: building and analyzing models !
                                     with RooFit, RooStats & HistFactory


•  Modeling 1 –  Systematic uncertainties, “Profile Likelihood”:!
                      Counting models with nuisance parameters


•  Statistics 1  – Treatment of nuisance parameters in statistics inference

•  Software 2  – Hands-on: Counting models with NPs in RooFit!

                                       limits & confidence intervals with RooStats!



•  Modeling 2   – Modeling distributions with nuisance parameters,!
                       basics of template morphing


•  Modeling 3   – Understanding complex fits – debugging techniques

•  Software 3   – Hands-on: Modeling (un)binned distributions in RooFit,!

                                        Combination & reparametrization!
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Software 1 
 

Overview: 
 building and analyzing models  

with 
RooFit, RooStats & HistFactory
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The HEP analysis workflow illustrated
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Simulation of high-energy!
physics process


Simulation of ‘soft physics’!
physics process


Simulation of ATLAS!
detector
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All experimental results start with the formulation of a model


•  Examples of HEP physics models being tested

–  SM with m(top)=172,173,174 GeV à Measurement top quark mass

–  SM with/without Higgs boson à Discovery of Higgs boson

–  SM with composite fermions/Higgs à Measurement of Higgs coupling properties


•  Via chain of physics simulation, showering MC, detector simulation and 
analysis software, a physics model is reduced to a statistical model


•  A statistical model defines p(data|theory) for all observable outcomes

–  Example of a statistical model for a counting measurement with a known background
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s=0


s=5

s=10


s=15
 NB: b is a constant in this example


Definition: the Likelihood !
is P(observed data|theory)!

Nobs




Everything starts with the likelihood


•  All fundamental statistical procedures are based !
on the likelihood function as ‘description of the measurement’


Frequentist statistics 


Confidence interval on s! Posterior on s! s = x ± y!

Bayesian statistics 
 Maximum Likelihood


Nobs e.g. L(15|s=0)!
e.g. L(15|s=10)!



Everything starts with the likelihood
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Frequentist statistics 


Confidence interval!
or p-value!

Posterior on s!
or Bayes factor!

s = x ± y!

Bayesian statistics 
 Maximum Likelihood


λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!



How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)




ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)


How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Likelihood Model 
orders of magnitude more 
complicated. Describes

    - O(100) signal distributions

    - O(100) control sample distr.

    - O(1000) parameters 
                    representing  
                    syst. uncertainties


Frequentist confidence interval 
construction and/or p-value 
calculation not available 
as ‘ready-to-run’ algorithm 

in ROOT




How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Model Building phase (formulation of L(x|H)


ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)




ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)


How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Model Usage phase (use L(x|H) to make statement on H)




ML estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)


How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Design goal:

Separate building of Likelihood model as much as possible!
from statistical analysis using the Likelihood model



à  More modular software design

à  ‘Plug-and-play with statistical techniques

à  Factorizes work in collaborative effort 




The idea behind the design of RooFit/RooStats/HistFactory


•  Modularity, Generality and flexibility

•  Step 1 – Construct the likelihood function L(x|p)!

•  Step 2 – Statistical tests on parameter of interest p !
!
Procedure can be Bayesian, Frequentist, or Hybrid), !
but always based on L(x|p)


•  Steps 1 and 2 are conceptually separated, !
and in Roo* suit also implemented separately.
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RooFit,  or  RooFit+HistFactory!

RooStats!



The idea behind the design of RooFit/RooStats/HistFactory


•  Steps 1 and 2 can be ‘physically’ separated (in time, or user)

•  Step 1 – Construct the likelihood function L(x|p)"

"
"
"
"



•  Step 2 – Statistical tests on parameter of interest p !
!
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RooFit,  or  RooFit+HistFactory!

RooStats!

RooWorkspace!

Complete description"
of likelihood model,"
persistable in ROOT file

(RooFit pdf function)



Allows full introspection"
and a-posteriori editing"





The benefits of modularity


•  Perform different statistical test on exactly the same model
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RooFit,  or  RooFit+HistFactory!

RooStats!
(Frequentist!
with toys) !

RooWorkspace!

RooStats!
(Frequentist!
asymptotic) !

RooStats!
Bayesian!
MCMC!

“Simple fit”!
! (ML Fit with 

HESSE or 
MINOS) 



RooFit!

WV + D. Kirkby - 1999 



RooFit – Focus: coding a probability density function


•  Focus on one practical aspect of many data analysis in HEP: !
How do you formulate your p.d.f. in ROOT 


–  For ‘simple’ problems (gauss, polynomial) this is easy

–  But if you want to do unbinned ML fits, use non-trivial functions, or work with 

multidimensional functions you quickly find that you need some tools to help you


•  The RooFit project started in 1999 for data modeling needs for 
BaBar collaboration initially, publicly available in ROOT since 2003




RooFit core design philosophy


•  Mathematical objects are represented as C++ objects




variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 

)(xf

x

x!

dxxf
x

x
∫
max

min

)(

)(xf
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Data modeling – Constructing composite objects


•  Straightforward correlation between mathematical representation 
of formula and RooFit code


RooRealVar x 

RooRealVar s 

RooFormulaVar sqrts 

RooGaussian g 

� RooRealVar x(“x”,”x”,-10,10) ; 
� RooRealVar m(“m”,”mean”,0) ; 
� RooRealVar s(“s”,”sigma”,2,0,10) ; 
� RooFormulaVar sqrts(“sqrts”,”sqrt(s)”,s) ; 
� RooGaussian g(“g”,”gauss”,x,m,sqrts) ; 

Math 

RooFit 
diagram 

RooFit 
code 

RooRealVar m 

),,( smxgauss

� 
� 

� 

� 

� 



RooFit core design philosophy 


•  A special container class owns all objects that together build a 
likelihood function


RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace (keeps all parts together)


Gauss(x,µ,σ) 
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New feature for LHC




Populating a workspace the easy way – “the factory”


•  The factory allows to fill a workspace with pdfs and variables using 
a simplified scripting language


RooRealVar x RooRealVar y RooRealVar z 

RooAbsReal f 

RooWorkspace w(“w”) ; 
w.factory(“Gaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”); 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace


Gauss(x,µ,σ) 
New feature for LHC
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Model building – (Re)using standard components


•  RooFit provides a collection of compiled standard PDF classes


RooArgusBG 

RooPolynomial 

RooBMixDecay 

RooHistPdf 

RooGaussian 

Basic 
Gaussian, Exponential, Polynomial,… 
Chebychev polynomial 

Physics inspired 
ARGUS,Crystal Ball,  
Breit-Wigner, Voigtian, 
B/D-Decay,…. 

Non-parametric 
Histogram, KEYS 

Easy to extend the library: each p.d.f. is a separate C++ class 
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Model building – (Re)using standard components


•  Library p.d.f.s can be adjusted on the fly.

–  Just plug in any function expression you like as input variable

–  Works universally, even for classes you write yourself


•  Maximum flexibility of library shapes keeps library small


g(x,y;a0,a1,s) 
g(x;m,s) m(y;a0,a1) 

RooPolyVar  m(“m”,y,RooArgList(a0,a1)) ; 
RooGaussian g(“g”,”gauss”,x,m,s) ; 



From empirical probability models to simulation-based models


•  Large difference between B-physics and LHC hadron physics is 
that for the latter distributions usually don’t follow simple analytical 
shapes


•  But concept of simulation-driven template models can also extent 
to systematic uncertainties. Instead of empirically chosen 
‘nuisance parameters’ (e.g. polynomial coefs) construct degrees 
of freedom that correspond to known systematic uncertainties  
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Unbinned analytical "
probability model


(Geant) Simulation-driven"
binned template model 




The HEP analysis workflow illustrated
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Simulation of high-energy!
physics process


Simulation of ‘soft physics’!
physics process


Simulation of ATLAS!
detector


Reconstruction !
of ATLAS detector
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prob(data|SM)


P(m4l|SM[mH])


Observed m4l


Hard Theory 
uncertainties


Soft Theory 
uncertainties


Detector 
modelling  

uncertainties




Modeling of shape systematics in the likelihood


•  Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain


–  Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ !
settings of systematic effect


•  Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 
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‘-1σ’
 ‘nominal’
 ‘+1σ’

“Jet Energy Scale” 




Need to interpolate between template models


•  Need to define ‘morphing’ algorithm to define !
distribution s(x) for each value of α
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s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 



Visualization of bin-by-bin linear interpolation of distribution
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x
α




Example 2 : binned L with syst


•  Example of template morphing!
systematic in a binned likelihood
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L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) ⋅G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m) ; 
 
 // Construct template models from histograms 

 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“HistFunc::s_p(x,hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 

 // Construct morphing model 

 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct full model 

 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 



The structure of an (Higgs) profile likelihood function


•  Likelihood describing Higgs samples have following structure
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LH→X (x |µ,
!
θ ) = Lphys (x |µ,

!
θ )

i=0...n
∏ ⋅ Lcontrol (x |µ,

!
θ )

i=0...n
∏ ⋅Lsub(θ1) ⋅Lsub(θ1

) ⋅!⋅Lsub(θn )

Signal region 1


Signal region 2


Control region 1
 Control region 2


‘Constraint θ1’
 ‘Constraint θn’


‘Constraint θn’
Strength of"
systematic "

uncertainties




The structure of an (Higgs) profile likelihood function

•  A simultaneous fit of physics samples and (simplified) performance measurements
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LH→X (x |µ,
!
θ ) = Lphys (x |µ,

!
θ )

i=0...n
∏ ⋅ Lcontrol (x |µ,

!
θ )

i=0...n
∏ ⋅Lsub(θ1) ⋅Lsub(θ1

) ⋅!⋅Lsub(θn )

Signal region 1


Signal region 2


Control region 1
 Control region 2


‘Simplified Likelihood of "
a measurement related"

to systematic uncertainties’


‘Subsidiary "
measurement 1’


‘Jet Energy scale’


‘Subsidiary "
measurement 2’


B-tagging eff


‘Subsidiary "
measurement n’"

Factorization scale




The Workspace!



The workspace


•  The workspace concept has revolutionized the way people share and 
combine analysis


–  Completely factorizes process of building and using likelihood functions

–  You can give somebody an analytical likelihood of a (potentially very complex) 

physics analysis in a way to the easy-to-use, provides introspection, and is easy to 
modify.


Wouter Verkerke, NIKHEF 


RooWorkspace 

RooWorkspace w(“w”) ; 
w.import(sum) ; 
w.writeToFile(“model.root”) ; 

model.root 



Using a workspace 
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RooWorkspace 

// Resurrect model and data 
TFile f(“model.root”) ; 
RooWorkspace* w = f.Get(“w”) ; 
RooAbsPdf* model = w->pdf(“sum”) ; 
RooAbsData* data = w->data(“xxx”) ; 
 
// Use model and data 
model->fitTo(*data) ; 
RooPlot* frame =  
         w->var(“dt”)->frame() ; 
data->plotOn(frame) ; 
model->plotOn(frame) ; 



The idea behind the design of RooFit/RooStats/HistFactory


•  Step 1 – Construct the likelihood function L(x|p)"
"
"
"
"
"
"



•  Step 2 – Statistical tests on parameter of interest p !
!
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RooFit,  or  RooFit+HistFactory!

RooStats!

RooWorkspace!

Complete description"
of likelihood model,"
persistable in ROOT file

(RooFit pdf function)

Allows full introspection"
and a-posteriori editing"



RooWorkspace w(“w”) ; 
w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”) ; 

w.factory(“Chebychev::bkg(x,a1[-1,1])”) ; 

w.factory(“SUM::model(fsig[0,1]*sig,bkg)”) ; 

w.writeToFile(“L.root”) ; 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data) ; 



Example RooFit component model for realistic Higgs analysis


variables

function objects


Graphical illustration of function!
components that call each other




Likelihood model describing the !
ZZ invariant mass distribution 
including all possible systematic "
uncertainties


RooFit  
workspace 



Analysis chain identical for highly complex (Higgs) models


•  Step 1 – Construct the likelihood function L(x|p)"
"
"
"
"
"
"



•  Step 2 – Statistical tests on parameter of interest p !
!
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RooStats!

RooWorkspace!

Complete description"
of likelihood model,"
persistable in ROOT file

(RooFit pdf function)

Allows full introspection"
and a-posteriori editing"



RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data, 
           GlobalObservables(w->set(“MC_GlObs”), 
           Constrain(*w->st(“MC_NuisParams”) ; 



Workspaces power collaborative statistical modelling


•  Ability to persist complete(*) Likelihood models !
has profound implications for HEP analysis workflow


–  (*) Describing signal regions, control regions, and including nuisance 
parameters for all systematic uncertainties)


•  Anyone with ROOT (and one ROOT file with a workspace) !
can re-run any entire statistical analysis out-of-the-box!

–  About 5 lines of code are needed

–  Including estimate of systematic uncertainties


•  Unprecedented new possibilities for cross-checking results, !
in-depth checks of structure of analysis


–  Trivial to run variants of analysis (what if ‘Jet Energy Scale uncertainty’ is 7% 
instead of 4%). Just change number and rerun.


–  But can also make structural changes a posteri. For example, rerun with 
assumption that JES uncertainty in forward and barrel region of detector are 
100% correlated instead of being uncorrelated.


Wouter Verkerke, NIKHEF 




Collaborative statistical modelling


•  As an experiment, you can effectively build a library of 
measurements, of which the full likelihood model is !
preserved for later use


–  Already done now, experiments have such libraries of workspace files,

–  Archived in AFS directories, or even in SVN….

–  Version control of SVN, or numbering scheme in directories allows for easy 

validation and debugging as new features are added!



•  Building of combined likelihood models greatly simplified. 

–  Start from persisted components. No need to (re)build input components.

–  No need to know how individual components were built, or are internally 

structured. Just need to know meaning of parameters. 

–  Combinations can be produced (much) later than original analyses.

–  Even analyses that were never originally intended to be combined with 

anything else can be included in joint likelihoods at a later time
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Higgs discovery strategy – add everything together


HàZZàllll
 Hàττ
 HàWWàμνjj


+… 

Assume SM rates 

L(µ,

θ ) = LH→WW (µWW ,


θ ) ⋅LH→γγ (µγγ ,


θ ) ⋅LH→ZZ (µZZ ,


θ ) ⋅…

Dedicated physics working groups "
define search for each of the 
major Higgs decay channels "
(HàWW, HàZZ, Hàττ etc)."
"
Output is physics paper or note, "
and a RooFit workspace with the "
full likelihood function


A small dedicated team of specialists builds a combined likelihood from the inputs. "
Major discussion point: naming of parameters, choice of parameters for systematic "
uncertainties (a physics issue, largely)




The benefits of modularity


•  Technically very straightforward to combine measurements "
"
"






Wouter Verkerke, NIKHEF 


RooFit,  or  RooFit+HistFactory!

RooStats


RooWorkspace! RooWorkspace!

RooWorkspace!

Higgs channel 1
 Higgs channel 2


Combiner!

RooStats!

Higgs

Combination


Lightweight"
software tool"
using RooFit"
editor tools"
(~500 LOC)


Insertion of "
combination "

step does not "
modify workflow "

before/after "
combination step




Workspace persistence of really complex models works too!


F(x,p)


x
 p


Atlas Higgs combination model (23.000 functions, 1600 parameters)


Model has ~23.000 function objects, ~1600 parameters

Reading/writing of full model takes ~4 seconds!

ROOT file with workspace is ~6 Mb






With these combined models the Higgs discovery plots were produced…
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LATLAS(µ,θ) = 

Neyman construction!
with profile likelihood !

ratio test


CMS




More benefits of modularity


•  Technically very straightforward to reparametrize measurements "
"
"
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RooFit,  or  RooFit+HistFactory!

RooStats


RooWorkspace!

RooWorkspace!

Standard !
Higgs combination


Reparametrize!

RooStats!

Lightweight!
software tool!
using RooFit!
editor tools


Reparametrization  
step does not  

modify workflow  
 

BSM!
Higgs combination




BSM Higgs constraints from!
reparametrization of SM Higgs!
Likelihood model 
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Simplified MSSM (tanβ,mA)


Imposter model(M,ε)

Minimal composite Higgs(ξ)


Two Higgs "
Double Model"
(tanβ,cos(α-β))


Portal model (mX)


(ATLAS-CONF-2014-010)




An excursion – Collaborative analyses with workspaces


•  How can you reparametrize existing Higgs likelihoods in practice?

•  Write functions expressions corresponding to new parameterization!

!



•  Import transformation in workspace, edit existing model 
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w.factory(“expr::mu_gg_func(‘(KF2*Kg2)/ 
                            (0.75*KF2+0.25*KV2)’, 
                            KF2,Kg2,KV2) ; 

w.import(mu_gg_func) ; 

w.factory(“EDIT::newmodel(model,mu_gg=mu_gg_gunc)”) ; 



HistFactory!

K. Cranmer, A. Shibata, G. Lewis, L. Moneta, W. Verkerke (2010) 




HistFactory – structured building of binned template models


•  RooFit modeling building blocks allow to easily construct!
likelihood models that model shape and rate systematics with!
one or more nuisance parameter


–  Only  few lines of code per construction


•  Typical LHC analysis required modeling of 10-50 systematic 
uncertainties in O(10) samples in anywhere between 2 and 100 
channels  à Need structured formalism to piece together 
model from specifications. This is the purpose of HistFactory


•  HistFactory conceptually similar to workspace factory, but has 
much higher level semantics


–  Elements represent physics concepts (channels, samples, uncertainties and 
their relation) rather than mathematical concepts


–  Descriptive elements are represented by C++ objects (like roofit),!
and can be configured in C++, or alternively from an XML file


•  HistFactory builds a RooFit (mathematical) model !
from a physics model.!
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HistFactory elements of a channel


•  Hierarchy of concepts for description of one measurement channel
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(Theory) sample !
normalization


Template morphing shape systematic


Beeston-Barlow-lite MC statistical uncertainties




HistFactory elements of measurement


•  One or more channels are combined to form a measurement

–  Along with some extra information (declaration of the POI, the luminosity of the 

data sample and its uncertainty)
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Once physics model is defined, one line of code will turn it into a RooFit likelihood 




How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


Maximum Likelihood estimation of!
parameters μ,θ using MINUIT !
(MIGRAD, HESSE, MINOS)


μ = 5.3 ± 1.7


“inside ROOT”


Likelihood Model 
orders of magnitude more 
complicated. Describes

    - O(100) signal distributions

    - O(100) control sample distr.

    - O(1000) parameters 
                    representing  
                    syst. uncertainties


Frequentist confidence interval 
construction and/or p-value 
calculation not available 
as ‘ready-to-run’ algorithm 

in ROOT


✔ 



RooStats!

K. Cranmer, L. Moneta, S. Kreiss, G. Kukartsev, G. Schott, G. Petrucciani, WV - 2008 



The benefits of modularity


•  Perform different statistical test on exactly the same model
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RooFit,  or  RooFit+HistFactory!

RooStats!
(Frequentist!
with toys) !

RooWorkspace!

RooStats!
(Frequentist!
asymptotic) !

RooStats!
Bayesian!
MCMC!

“Simple fit”!
! (ML Fit with 

HESSE or 
MINOS) 



Maximum Likelihood estimation as simple statistical analysis


•  Step 1 – Construct the likelihood function L(x|p)"
"
"
"
"
"
"



•  Step 2 – Statistical tests on parameter of interest p !
!
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RooStats!

RooWorkspace!

RooWorkspace w(“w”) ; 
w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”; 

w.factory(“Chebychev::bkg(x,a1[-1,1])”) ; 

w.factory(“SUM::model(fsig[0,1]*sig,bkg)”) ; 

w.writeToFile(“L.root”) ; 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data) ; 



The need for fundamental statistical techniques
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Frequentist statistics 


Confidence interval!
or p-value!

Posterior on s!
or Bayes factor! s = x ± y!

Bayesian statistics 
 Maximum Likelihood


λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!

No assumptions!
on normal distributions,!
or asymptotic validity !

for high statistics!

Formulation!
of p(th|data)!



But fundamental techniques can be complicated to execute…


•  Example of confidence interval calculation with Neyman construction

–  Need to construct ‘confidence belt’ using toy MC. Intersection observed data with 

belt defined interval in POI  with guaranteed coverage  !



•  Expensive, complicated procedure, but completely procedural"
once Likelihood and parameter of interest are fixed !
à Can be wrapped in a tool that runs effectively ‘out-of-the-box’ 
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x=3.2


observable x


pa
ra

m
et

er
 μ

 tμ(x,μ)


Likelihood Ratio

pa

ra
m

et
er

 μ

 = −2 log L(x |µ)

L(x | µ̂)



Running RooStats interval calculations ‘out-of-the-box’


•  Confidence intervals calculated with model

–  ‘Simple!

Fit’




–  Feldman!

Cousins!
(Frequentist!
Confidence!
Interval)




–  Bayesian !

(MCMC)


Wouter Verkerke, NIKHEF 


FeldmanCousins fc;  
fc.SetPdf(myModel);  

fc.SetData(data); fc.SetParameters(myPOU);  
fc.UseAdaptiveSampling(true);  
fc.FluctuateNumDataEntries(false);  
fc.SetNBins(100); // number of points to test per parameter  
fc.SetTestSize(.1);  
ConfInterval* fcint = fc.GetInterval();  

UniformProposal up;  
MCMCCalculator mc;  
mc.SetPdf(w::PC);  
mc.SetData(data);  mc.SetParameters(s);  
mc.SetProposalFunction(up);  
mc.SetNumIters(100000); // steps in the chain  
mc.SetTestSize(.1); // 90% CL  
mc.SetNumBins(50); // used in posterior histogram  
mc.SetNumBurnInSteps(40);  

ConfInterval* mcmcint = mc.GetInterval(); 

RooAbsReal* nll = myModel->createNLL(data) ; 
RooMinuit m(*nll) ; 

m.migrad() ; 

m.hesse() ; 



But you can also look ‘in the box’ and build your own


Tool to calculate p-values for a given hypothesis


Tool to construct !
interval from !
hypo test results


The test statistic

to be used for!
the calculation!
of p-values 


)(µµ ʹq

µµ

µ

µ dqqf
obsq
∫
∞

ʹ
,

)|(

)|( µµ ʹqf
Tool to construct!
test statistic!
distribution


Offset advanced control over details of statistical"
procedure (use of CLS, choice of test statistic, boundaries…)




RooStats class structure
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Summary

•  RooFit and RooStats allow you to perform advanced statistical data 

analysis

–  LHC Higgs results a prominent example
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•  RooFit provides (almost) limitless !
model building facilities


–  Concept of persistable model workspace allows to 
separate model building and model interpretation


–  HistFactory package introduces structured model 
building for binned  likelihood template models that 
are common in LHC analyses


•  Concept of RooFit Workspace has!
completely restructured HEP analysis!
workflow with ‘collaborative modeling’


•  RooStats provide a wide set of statistical 
tests that can be performed on RooFit 
models


–  Bayesian, Frequentist and Likelihood-based test 
concepts


CMS 

ATLAS 



Modeling 1  



Systematic uncertainties, 
“Profile Likelihood”: 

 
Counting models  

with nuisance parameters
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Most statistics textbooks deal with the ideal experiment


•  The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement


•  For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial!
!
!
!
!
!
!
!
!



•  So far only considered a single parameter in the likelihood:!
the physics parameter of interest, usually denoted as μ
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏



The imperfect experiment


•  In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest


•  How do you model these uncertainties in the likelihood? 
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions"
are affected by (systematic) uncertainties




Adding parameters to the model


•  We can describe uncertainties in our model by adding new 
parameters of which the value is uncertain


•  These additional model parameters are not ‘of interest’, but we 
need them to model uncertainties à ‘Nuisance parameters’
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

L(
!
N |µ) = Poisson(Ni |µ ⋅ !si + !bi )

bins
∏



What are the nuisance parameters of your physics model?


•  Empirical modeling of uncertainties, e.g. polynomial for background, 
Gaussian for signal, is easy to do, but may lead to hard questions!
!



•  Is your model correct? (Is true signal distr. captured by a Gaussian?)

•  Is your model flexible enough? (4th order polynomial, or better 6th)?

•  How do model parameters connect to known detector/theory 

uncertainties in your distribution? 

–  what conceptual uncertainty do your parameters represent?
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )



The simulation workflow and origin of uncertainties
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Simulation of high-energy!
physics process


Simulation of ‘soft physics’!
physics process


Simulation of ATLAS!
detector


Reconstruction !
of ATLAS detector


LHC data


An
aly

sis
 E

ve
nt

 s
ele

ct
io

n




Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% for jets with pT<40”!




•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 

difference the systematic uncertainty”

–  “Evaluate the effect of using Herwig and Pythia and consider the difference !

the systematic uncertainty”!



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties in MC samples 
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What can you do with systematic uncertainties


•  As most of the typical systematic prescriptions have no immediately 
apparent parametric formulation in your likelihood, common approach 
is ‘vary setting, rerun analysis, observe the difference’ 


•  This common ‘naïve’ approach to assess effect of systematic 
uncertainties amounts to simple error propagation


•  Error propagation procedure in a nutshell

–  Make nominal measurement (using your favorite statistical inference procedure)

–  Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1 

sigma’ up and down ) Redo measurement procedure for each shift

–  Consider propagated effect of shifted setting the systematic uncertainty!



!
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µ = µnom ±σ stat ± (µsyst
up −µsyst

down ) / 2±...

From statistical"
analysis


Systematic uncertainty"
from error propagation




Pros and cons of the ‘naïve’ approach


•  Pros

–  It’s easy to do

–  It results in a seemingly easy-to-interpret table of systematics


•  Cons

–  Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement à Completely ignored

–  Magnitude of stated systematic uncertainty may be incompatible with 

measurement result à Completely ignored 

–  You lost the connection with fundamental statistical techniques !

(i.e. evaluation of systematic uncertainties is completely detached from 
statistical procedure used to estimate physics quantity of interest) à No 
prescription to make confidence intervals, Bayesian posteriors etc in this way


–  No calibrated probabilistic statements possible (95% C.L.)


•  ‘Profiling’ à Incorporate a description of systematic uncertainties 
in the likelihood function that is used in statistical procedures 
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Everything starts with the likelihood
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Frequentist statistics 


Confidence interval!
or p-value!

Posterior on s!
or Bayes factor!

s = x ± y!

Bayesian statistics 
 Maximum Likelihood


λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!



Introducing uncertainties – a non-systematic example


•  The original model (with fixed b)


•  Now consider b to be uncertain!
!



•  The experimental data contains insufficient to constrain both!
s and b à Need to add an additional measurement to constrain b
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s=0 

s=5 

s=10 
s=15 

L(N|s) à L(N|s,b)




The sideband measurement


•  Suppose your data !
in reality looks like this è !
!
!
!
!
Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space !



•  Full likelihood of the measurement (‘simultaneous fit’)


LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents !
the amount of bkg is the SR. !
!
Scale factor τ accounts for difference !
in size between SR and CR


Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR
 SR


“Background uncertainty constrained from the data”




Generalizing the concept of the sideband measurement


•  Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’!
!
 


•  Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty 
 
 
 
 
 



–  We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement
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Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’


‘Subsidiary measurement’!
of background rate


Generalize: ‘sideband’ à ‘subsidiary measurement’!



What is a systematic uncertainty?


•  Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.


–  E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” !
does not discuss systematic uncertainties at all!



•  A common definition is

–  “Systematic uncertainties are all uncertainties that are !

not directly due to the statistics of the data”!



•  But the notion of ‘the data’ is a key source of ambiguity: 

–  does it include control measurements?

–  does it include measurements that were used to perform basic !

(energy scale) calibrations?
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Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% !

 for jets with pT<40”!



•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 !

and 2.0 and consider the difference !
the systematic uncertainty”


–  “Evaluate the effect of using !
Herwig and Pythia and consider the difference !
the systematic uncertainty”!



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties!

in MC samples 
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Subsidiary measurement!
is an actual measurement!
à conceptually similar to !
    a ‘sideband’ fit


Subsidiary measurement!
unclear, but origin of!
prescription may well!
be another measurement

(if yes, like sideband, if!
 no, what is source of info?)


Subsidiary measurement!
is a Poisson counting!
experiment (but now in!
MC events), otherwise!
conceptually identical to!
a ‘sideband fit’




Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% !

 for jets with pT<40”!



•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 !

and 2.0 and consider the difference !
the systematic uncertainty”


–  “Evaluate the effect of using !
Herwig and Pythia and consider the difference !
the systematic uncertainty”!



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties!

in MC samples 
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Subsidiary measurement!
is an actual measurement!
à conceptually to !
    a ‘sideband’ fit


Subsidiary measurement!
unclear, but origin of!
prescription may well!
be another measurement

(if yes, like sideband, if!
 no, what is source of info?)


Subsidiary measurement!
is a Poisson counting!
experiment (but now in!
MC events), otherwise!
conceptually identical to!
a ‘sideband fit’


Almost all systematic uncertainties are similar in nature 
to ‘sidebands’ measurements of some form or shape!


à Can always model systematics like sidebands !
     in the Likelihood



And even when the are not the (in)direct result of !
some measurement (certainty theory uncertainties)!
we can still model them in that form






Modeling a detector calibration uncertainty


•  Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 


L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)


Observed event count


Nominal background !
expectation from MC!
(a constant), obtained!
with a=a˜


Response function!
for JES uncertainty!
(a 1% JES change !

results in a 2% !
acceptance change)


“Subsidiary measurement”

Encodes ‘external knowledge’ !
on JES calibration


Nominal calibration

Assumed calibration


Uncertainty!
on nominal!
calibration!
(here 5%)!

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)



Modeling a detector calibration uncertainty


•  Simplify expression by renormalizing “subsidiary measurement”
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L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)


Observed event count


Nominal background !
expectation from MC!
(a constant)


Response function 
for normalized JES  

parameter!
[a unit change in α !

– a 5% JES change –  !
still results in a 10% !
acceptance change]


“Normalized !
subsidiary measurement”!
!
The scale of parameter 
α is now chosen such that  
values ±1 corresponds to the  
nominal uncertainty 
(in this example 5%) 

Gauss( α |α,σα )



The response function as empirical model of full simulation


•  Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain


–  But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming


–  Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation


–  For example run at nominal JES and with JES shifted up and down by ±5%
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L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α


b(
α)



-1
  0
  +1
 0.9


1.0


1.1


Full MC result for JES at -5%


Full MC result for JES at +5%

Empirical approximation"
of true response




What is a systematic uncertainty?


•  It is an uncertainty in the Likelihood of your physics measurement!
that is characterized deterministically, up to a set of parameters,!
of which the true value is unknown.


•  A fully specified systematic uncertainty defines 

–  1: A set of one or more parameters !

    of which the true value is unknown, 

–  2: A response model that describes the effect of those !

    parameters on the measurement!
    (sampled from full simulation, and interpolation)


–  3: A subsidiary measurement of the parameters!
    that constrains the values the parameters can take!
    (implies a specific distribution: Gaussian (default, CLT),!
     Poisson (low-stats counting), or otherwise)
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Names and conventions – ‘profiling’ & ‘constraints’


•  The full likelihood function of the form !
!
!
!
is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way


–  Note: statisticians use the word profiling for something else


•  Physicists often refer to the subsidiary measurement as a 
‘constraint term’


–  This is correct in the sense that it constrains the parameter α, but this labeling 
commonly lead to mistaken statements (e.g. that it is a pdf for α)


–  But it is not a pdf in the NP
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L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)



Names and conventions


•  The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point


–  The full likelihood is simply a joint likelihood of a physics measurement and a 
calibration measurement where both terms are treated on equal footing in the 
statistical procedure


–  In a perfect world, not bound by technical modelling constraints!
you would use this likelihood!
!
!
!
where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.


•  Since we are bound by technical constrains, we substitute LJES 
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same
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L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )



MC statistical uncertainties as systematic uncertainty


•  Another example of modeling a systematic uncertainty:!
MC statistical uncertainty


•  Follow same procedure again as before: 

–  Define response function (this is trivial for MC statistics: !

it is the luminosity ratio of the MC sample and the data sample)

–  Define distribution for the ‘subsidiary measurement’ – This is a Poisson 

distribution – since MC simulation is also a Poisson process

–  Construct full likelihood (‘profile likelihood’)


•  Note uncanny similarity to full likelihood of a sideband measurement! 


• Wouter Verkerke, NIKHEF


L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)


L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)



Modeling multiple systematic uncertainties


•  Introduction of multiple systematic uncertainties presents no 
special issues


•  Example JES uncertainty plus generator ISR uncertainty




•   A brief note on correlations


–  Word “correlations” often used sloppily – proper way is to think of correlations 
of parameter estimators. Likelihood defines parameters αJES, αISR. !
The (ML) estimates of these are denoted


–  The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)


–  The ML estimators of               using the full Likelihood may be correlated.!
This is due to physics modeling effects encoded in the joint response function 
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L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function!
for both systematics


One subsidiary!
measurement for each 

source of uncertainty


α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR



Modeling systematic uncertainties in multiple channels


•  Systematic effects that affect multiple measurements should be 
modeled coherently.


–  Example – Likelihood of two Poisson counting measurements


–  Effect of changing JES parameter αJES coherently affects both measurement.

–  Magnitude and sign effect does not need to be same, this is dictated by the 

physics of the measurement 
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L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅

JES response !
function for !
channel A


JES response 

function for !
channel B


JES!
subsidiary!

measurement




Statistics 1 
 

treatment of nuisance 
parameters in statistics 

inference
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The statisticians view on nuisance parameters


•  In general, our model of the data is not perfect


•  Can improve modeling by including additional adjustable parameters

•  Goal: some point in the parameter space of the enlarged model 

should be “true”

•  Presence of nuisance parameters decreases the sensitivity of the 

analysis of the parameter(s) of interest
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Treatment of nuisance parameters in parameter estimation


•  In POI parameter estimation, the effect of NPs incorporated 
through unconditional minimization


–  I.e. minimize Likelihood w.r.t all parameter simultaneously.


•  Simple example with 2-bin Poisson counting experiment
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L(s,b) = Poisson(10 | s+ b)Poisson(10 | 3⋅b)

Unconditional!
minimum in s,b


Conditional !
minimum in s!
(condition: b=5)


(ŝ, b̂)

ˆ̂s
b=5

L(s) = Poisson(10 | s+ 5)



Treatment of nuisance parameters in variance estimation


•  Maximum likelihood estimator of parameter variance !
is based on 2nd derivative of Likelihood 


–  For multi-parameter problems this 2nd derivative is generalized !
by the Hessian Matrix of partial second derivatives!
!
!
!



•  For multi-parameter likelihoods estimate of covariance Vij of pair!
of 2 parameters in addition to variance of individual parameters


–  Usually re-expressed in terms dimensionless correlation coefficients ρ 
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Treatment of nuisance parameters in variance estimation


•  Effect of NPs on variance estimates visualized
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Scenario 1

Estimators of !

POI and NP correlated!
i.e. ρ(s,b)≠0


Scenario 2

Estimators of !

POI and NP correlated!
i.e. ρ(s,b)=0
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Treatment of NPs in hypothesis testing and conf. intervals


•  We’ve covered frequentist hypothesis testing and interval 
calculation using likelihood ratios based on a likelihood with a 
single parameter (of interest) L(μ)


–  Result is p-value on hypothesis with given μ value, or

–  Result is a confidence interval [μ-,μ+] with values of μ for which p-value is at or 

above a certain level (the confidence level)


•  How do you do this with a likelihood L(μ,θ) where θ is a nuisance 
parameter?


–  With a test statistics qμ, we calculate p-value for hypothesis θ as 


•  But what values of θ do we use for f(qμ|μ,θ)?!
Fundamentally, we want to reject μ only if p<α for all θ!
à Exact confidence interval


∫
∞

=
obsq

dqqfp
,

),|(
µ

µµµ θµ



Hypothesis testing & conf. intervals with nuisance parameters


•  The goal is that the parameter of interest should be covered at the 
stated confidence for every value of the nuisance parameter


•  if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that value of the 
POI should be considered: 


–  e.g. don’t claim discovery if any background scenario is compatible with data!



•  But: technically very challenging and significant problems with 
over-coverage


–  Example: how broadly should ‘any background scenario’ be defined?  Should 
we include background scenarios that are clearly incompatible with the 
observed data?
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The profile likelihood construction as compromise


•  For LHC the following prescription is used: !
!
                Given L(μ,θ)!
!
perform hypothesis test for each value of μ (the POI), !
!
using values of nuisance parameter(s) θ that best fit the data 
under the hypothesis μ


•  Introduce the following notation!
!



•  The resulting confidence interval will have exact coverage for the 
points


–  Elsewhere it may overcover or undercover (but this can be checked)
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)(ˆ̂ µθ M.L. estimate of θ for a given value of μ!
(i.e. a conditional ML estimate)


))(ˆ̂,( µθµ

POI


NPs




The profile likelihood ratio


•  With this prescription we can construct the profile likelihood ratio 
as test statistic


•  NB: value profile likelihood ratio does not depend on θ 
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Profiling illustration with one nuisance parameter


• Wouter Verkerke, NIKHEF, 95
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Profile scan of a Gaussian plus Polynomial probability model


• Wouter Verkerke, NIKHEF


Likelihood Ratio


Profile Likelihood Ratio



Minimizes –log(L) !
for each value of fsig !
by changing bkg shape params!
(a 6th order Chebychev Pol)




Profile scan of a Gaussian plus Polynomial probability model


• Wouter Verkerke, NIKHEF


Likelihood Ratio


Profile Likelihood Ratio



Minimizes –log(L) !
for each value of fsig !
by changing bkg shape params!
(a 6th order Chebychev Pol)


Interval on μ widens 
due to effect of uncertain NPs 



PLR Confidence interval vs MINOS
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Confidence !
belt now !
range in PLR
 tμ(x,μ)


Profile Likelihood Ratio
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Measurement = tμ(xobs,μ) !
is now a function of μ


Asymptotically,!
distribution is identical!
for all μ


NB: asymptotically, distribution "
is also independent of true "
values of θ




Link between MINOS errors and profile likelihood


!
!
!
!
!
!
!



•  Note that MINOS algorithm in !
MINUIT gives same errors as !
Profile Likelihood Ratio


–  MINOS errors is bounding box !
around λ(s) contour


–  Profile Likelihood = Likelihood!
minimized w.r.t. all nuisance !
parameters


• Wouter Verkerke, NIKHEF
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NB: Similar to graphical interpretation of variance estimators, but those!
       always assume an elliptical contour from a perfectly parabolic likelihood 




Summary on NPs in confidence intervals


•  Exact confidence intervals are difficult with nuisance parameters

–  Interval should cover for any value of nuisance parameters

–  Technically difficult and significant over-coverage common


•  LHC solution Profile Likelihood ratio à Guaranteed coverage at 
measured values of nuisance parameters only


–  Technically replace likelihood ratio with profile likelihood ratio

–  Computationally more intensive (need to minimize likelihood w.r.t all nuisance 

parameters for each evaluation of the test statistic), but still very tractable


•  Asymptotically confidence intervals constructed with profile 
likelihood ratio test statistics correspond to (MINOS) likelihood 
ratio intervals


–  As distribution of profile likelihood becomes asymptotically independent of θ,!
coverage for all values of θ restored  


• Wouter Verkerke, NIKHEF, 100




Dealing with nuisance parameters in Bayesian intervals


•  Elimination of nuisance parameters in Bayesian interval: Integrate 
over the full subspace of all nuisance parameters;!
!
 !
!
!



•  You are left with posterior pdf for µ


P(µ | x)∝ L(x |µ,

θ )π (µ)π (


θ )( )d


θ∫

µ 

θ 

)ˆ,ˆ( θµ∫ × = ),( θµπ

Credible interval:

area that integrates !
X% of posterior


P(µ | x)∝ L(x |µ) ⋅π (µ)



Computational aspects of dealing with nuisance parameters


•  Dealing with many nuisance parameters is computationally 
intensive in both Bayesian and (LHC) Frequentist approach


•  Profile Likelihood approach

–  Computational challenge = Minimization of likelihood w.r.t. all nuisance 

parameters for every point in the profile likelihood curve

–  Minimization can be a difficult problem, !

e.g. if there are strong correlations, or multiple minima


•  Bayesian approach

–  Computational challenge = Integration of posterior density of all nuisance 

parameters


–  Requires sampling of very potentially very large space.

–  Markov Chain MC and importance sampling techniques can help, but still very 

CPU consuming 


• Wouter Verkerke, NIKHEF




Other procedures that have been tried*


•  Hybrid Frequentist-Bayesian approach (‘Cousins-Highland / ZN’)

–  Integrate likelihood over nuisance parameters!

!
!
!



–  Then treat integrated Lm as test statistic à obtain p-value from its distribution

–  In practice integral is performed using MC integration, so often described as a 

‘sampling method’!
!



–  Method has been shown to have bad coverage


•  Ad-hoc sampling methods of various types.

–  Usually amount to either MC integration or fancy error propagation!

 !
Note that sampling the conditional estimator       !
over sample of θ values obtained from π(θ) !
is just glorified error propagation! 


• Wouter Verkerke, NIKHEF

* But are known to have problems
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How much do answers differ between methods?


These slide discuss !
a ‘prototype’ likelihood!
that statisticians like: !
!
Poisson(Nsig|s+b) ⋅ Poisson(Nctl|τ⋅b)



NB: This is one of the very few!
problems with nuisance parameters!
with can be exactly calculation!





Recent comparisons results from PhyStat 2007
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Exact 
solution 



Summary of statistical treatment of nuisance parameters


•  Each statistical method has an associated technique to propagate 
the effect of uncertain NPs on the estimate of the POI


–  Parameter estimation à Joint unconditional estimation

–  Variance estimation à Replace d2L/dp2 with Hessian matrix

–  Hypothesis tests & confidence intervals à Use profile likelihood ratio

–  Bayesian credible intervals à Integration (‘Marginalization’)!




•  Be sure to use the right procedure with the right method

–  Anytime you integrate a Likelihood you are a Bayesian

–  If you are minimizing the likelihood you are usually a Frequentist

–  If you sample something chances are you performing either a (Bayesian) 

Monte Carlo integral, or are doing glorified error propagation


•  Answers can differ substantially between methods!

–  This is not always a problem, but can also be a consequence of a difference in 

the problem statement 

• Wouter Verkerke, NIKHEF



