Improved DATA MODELLING with Goodness-of-Fit & Likelihood-ratio tests

Terascale Statistics School, DESY, Feb 23, 2018

Olaf Behnke (DESY)

Content

- Goodness-of-Fit tests for
 - Checking data modelling
 - Outlier rejection
- Likelihood ratio tests for background

4

2

Optimal parametrisation

-0.04

-0.06

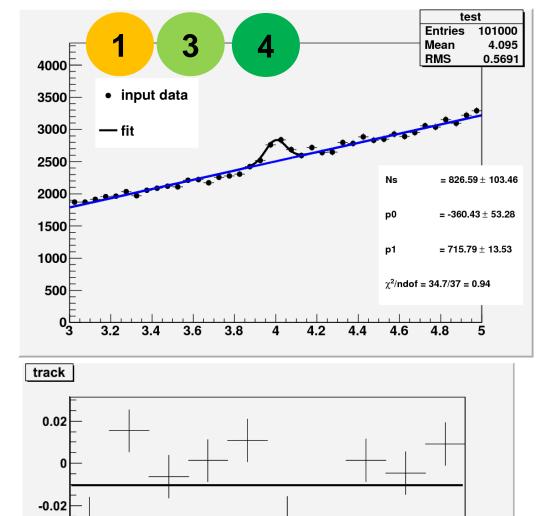
-0.08

 χ^2 / ndf

2

p0

Shape systematics (discrete profiling)



71.42/9

5

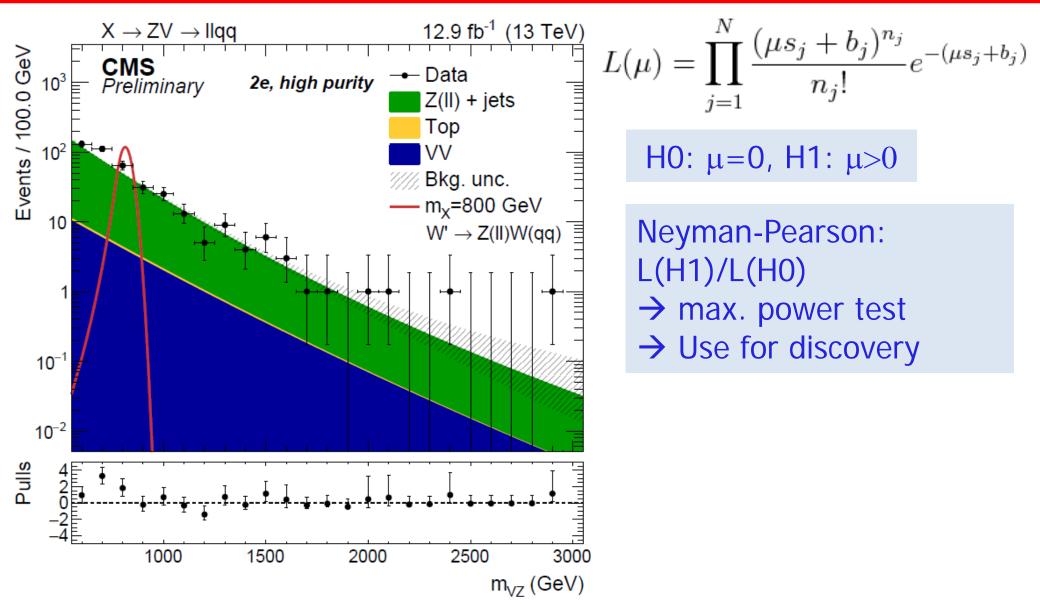
 -0.01047 ± 0.00316

2

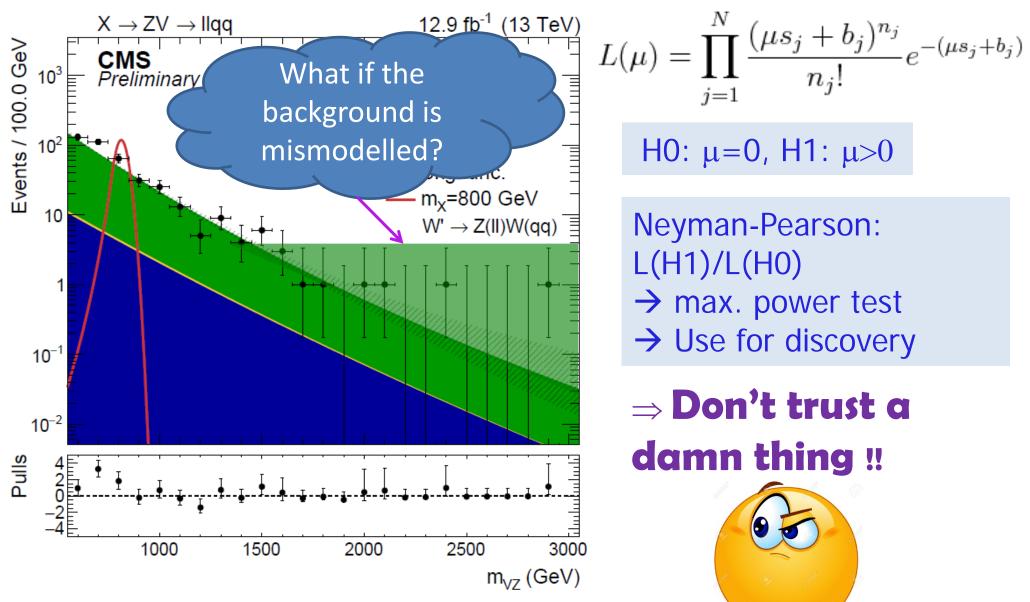
10

g

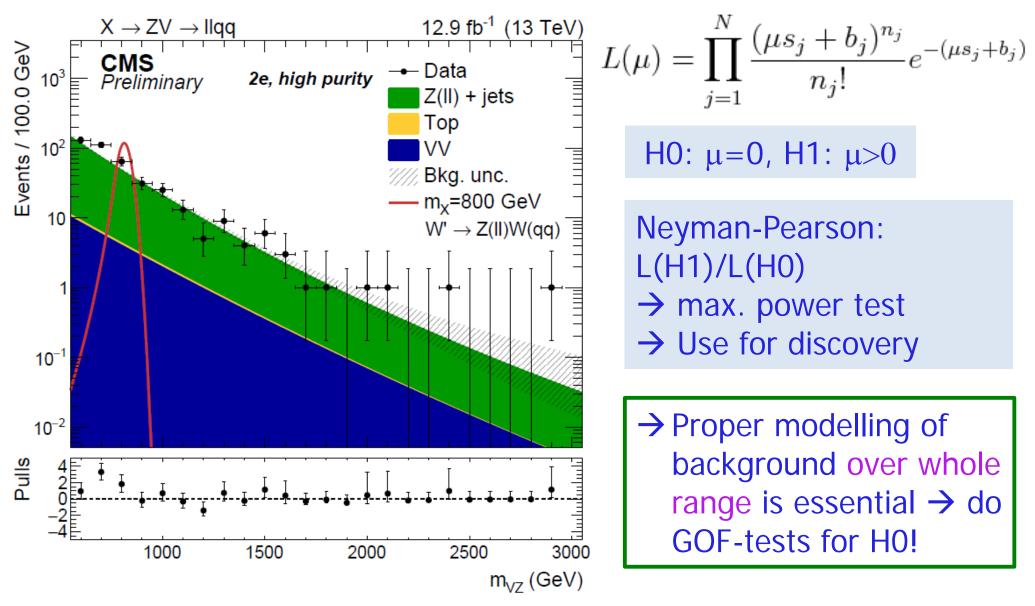
1 GOF tests for checking data modelling



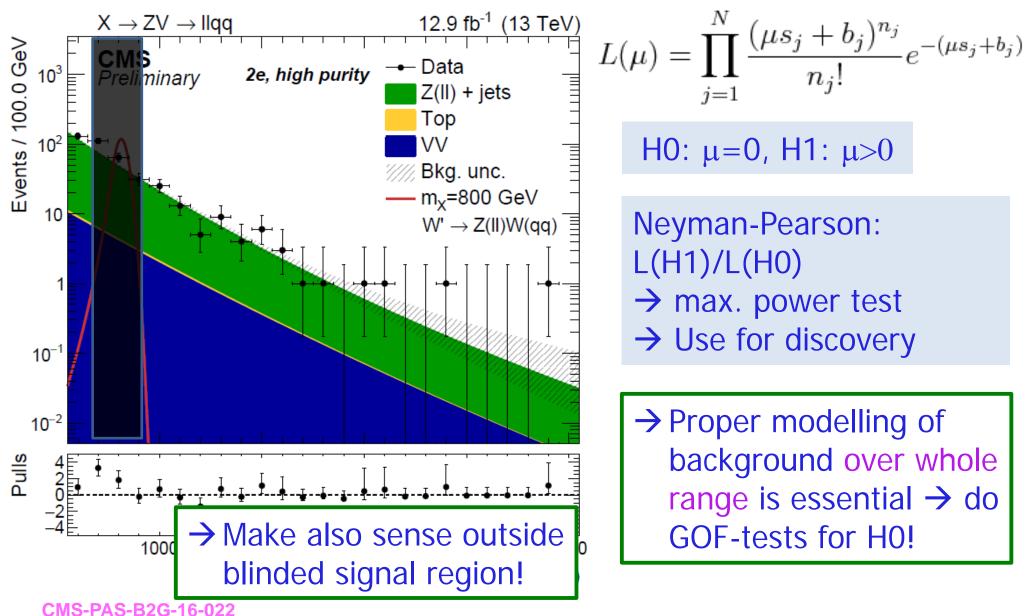
CMS-PAS-B2G-16-022



CMS-PAS-B2G-16-022

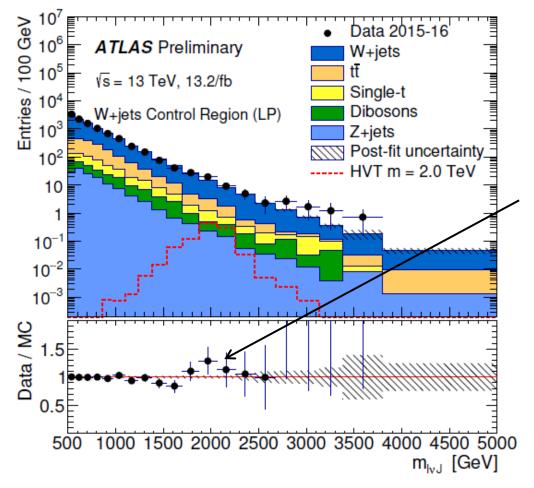


CMS-PAS-B2G-16-022



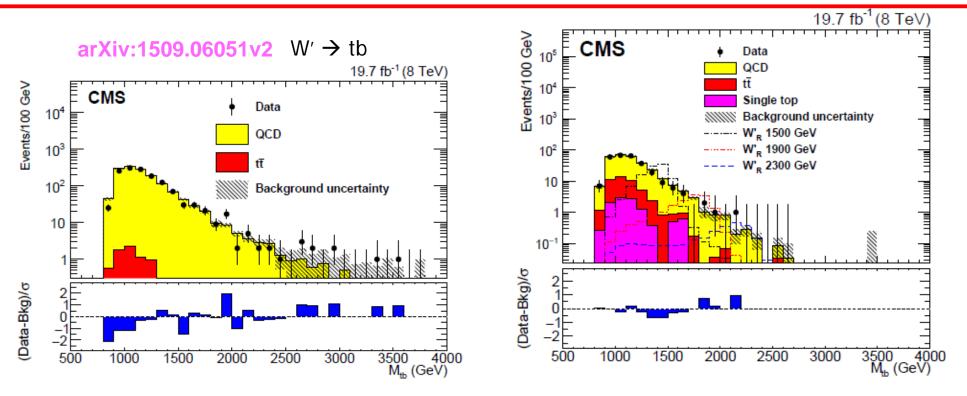
Goodness-Of-Fit Tests in ATLAS and CMS searches

ATLAS-CONF-2016-062 Diboson resonance



"Good agreement (optical inspection of ratio) between the data and the background prediction"

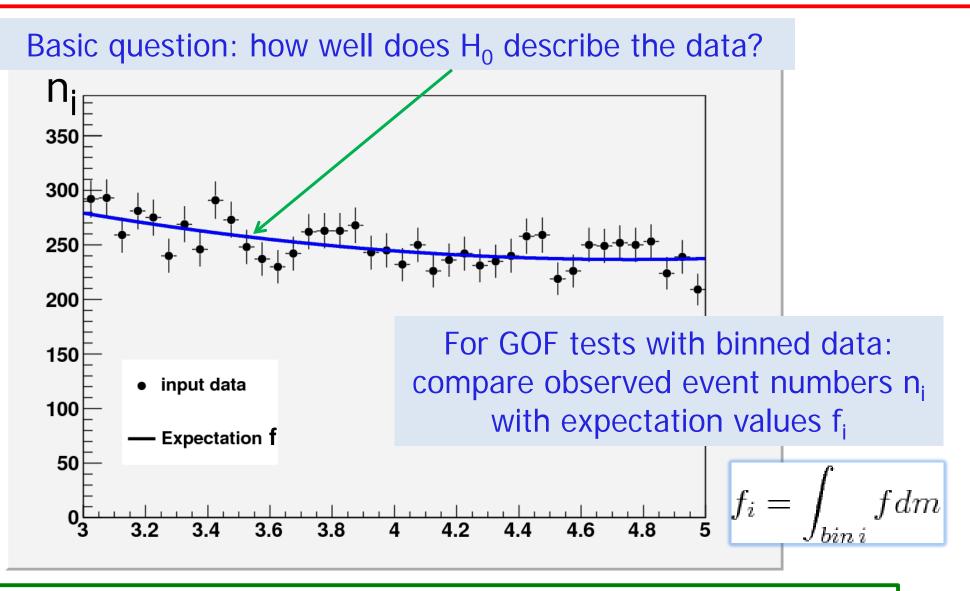
Goodness-Of-Fit Tests in ATLAS and CMS searches



"This test (optical pull inspection) shows good agreement between data and SM"

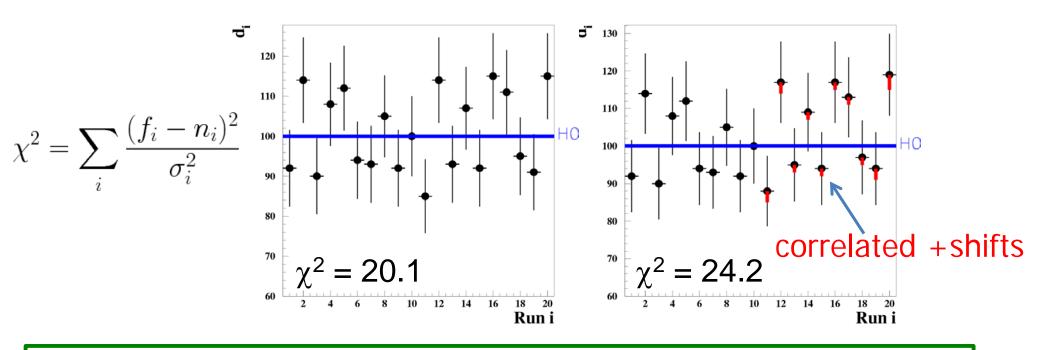
→ Optical inspection of bin-wise pulls is crucial but should do also global tests as discussed in the following slides!

Goodness-Of-Fit Tests – basics



 \rightarrow Since no H₁ specified \rightarrow many different GOF tests possible

Goodness-Of-Fit Test – χ^2 tests



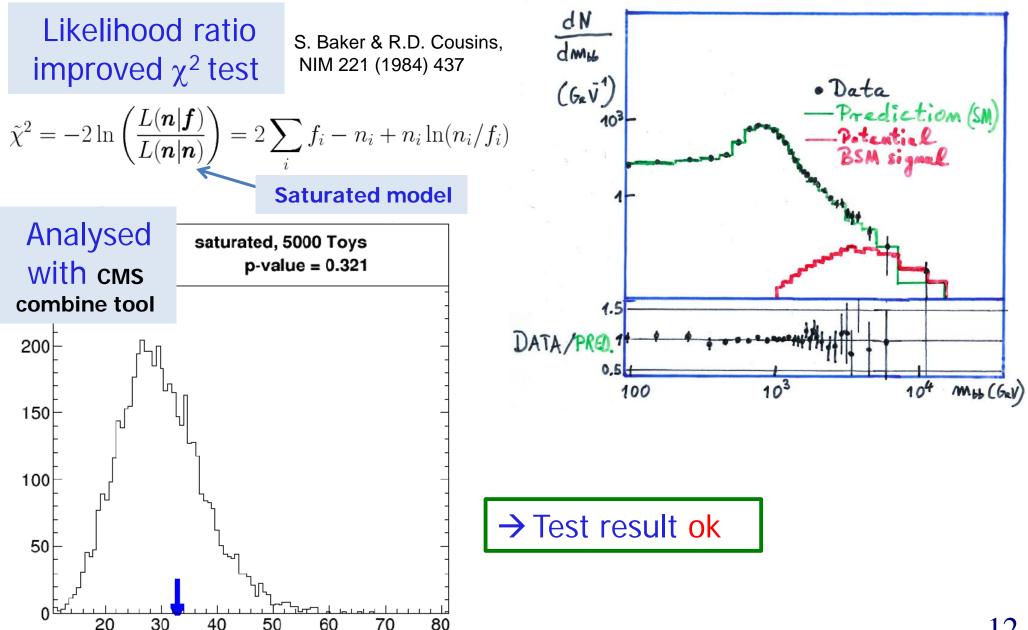
→ χ^2 throws away all sign and order info → not very sensitive to correlated shifts in a certain region.

→ apply further GOF tests to check all data/model facets!

Note: p-values for χ^2 : TMath::Prob(χ^2_{obs} ,ndf)

GOF-tests: exemplary analysis

Hypothetical pp data@100 TeV

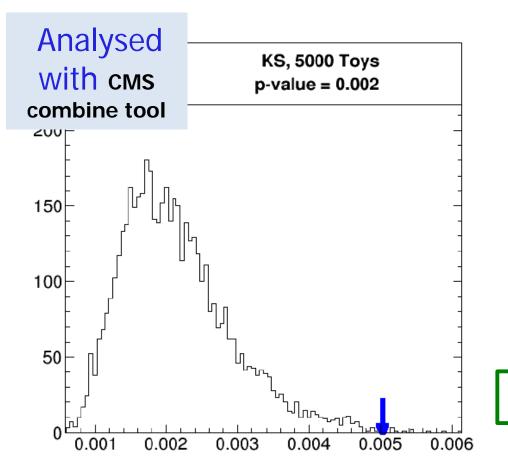


GOF-tests: exemplary analysis

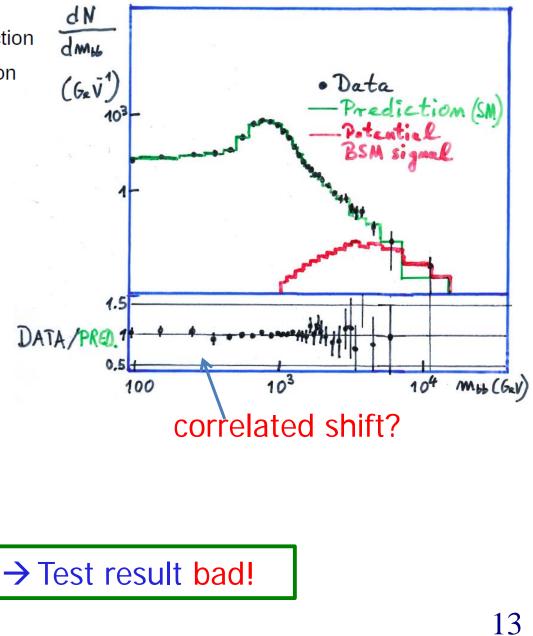
Kolgomorov-Smirnov test

F_c: Cumulative distribution function F_e: Empirical distribution function

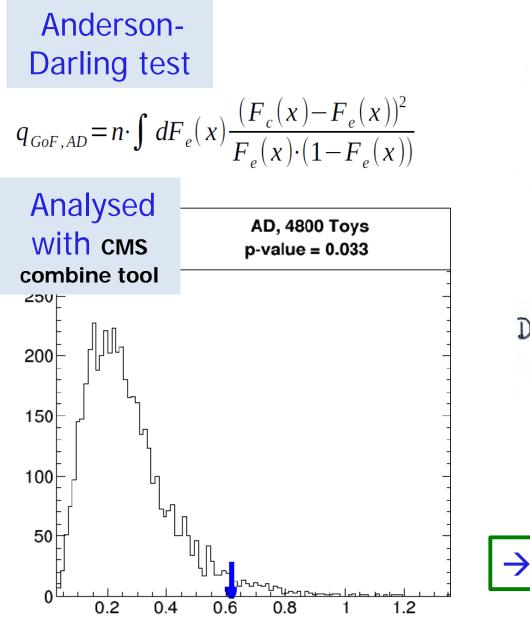
$$q_{GOF,KS} = \sup \left| F_c(x) - F_e(x) \right|$$



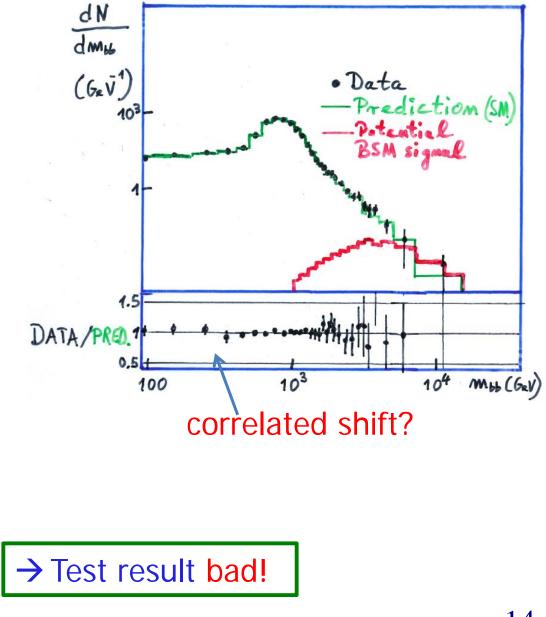
Hypothetical pp data@100 TeV



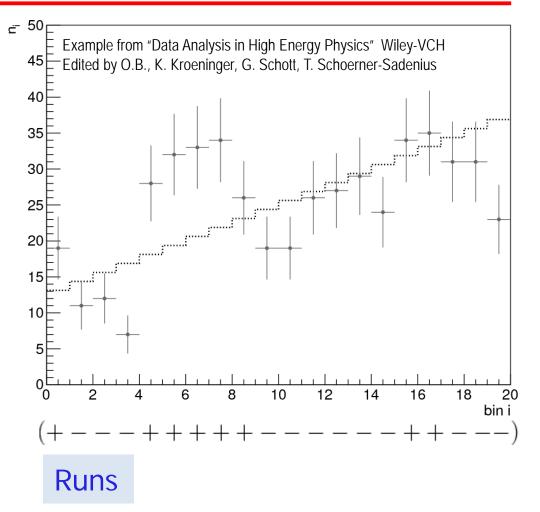
GOF-tests: exemplary analysis



Hypothetical pp data@100 TeV



Goodness of Fit - Run test



Idea: count runs = regions with same sign of deviation

$$N_{+} = \#bins data > model$$

$$E[r] = 1 + \frac{2N_{+}N_{-}}{N_{+} + N_{-}}$$

$$V[r] = \frac{2N_{+}N_{-}(2N_{+}N_{-} - N_{+} - N_{-})}{(N_{+} + N_{-})^{2}(N_{+} + N_{-} - 1)}$$

$$r - E[r] \quad \text{Approximate}$$

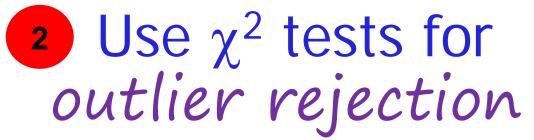
Approximate Significance

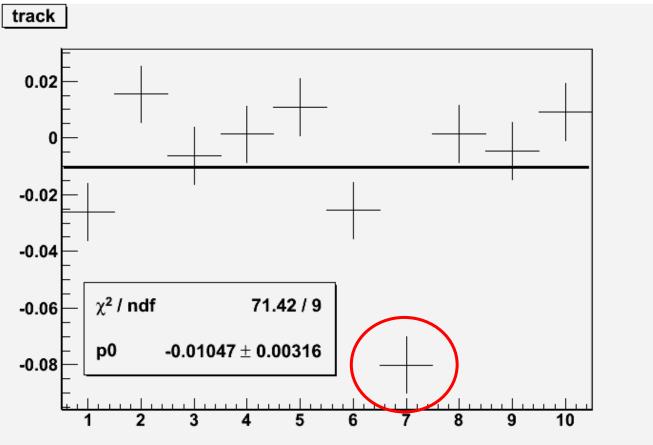
→ Easy to do test!

Here: r=6, E(r)=10.6±2.1 → p-value = 0.0285 Perform GOF tests through various analysis stages: ✓ Control plots (!)

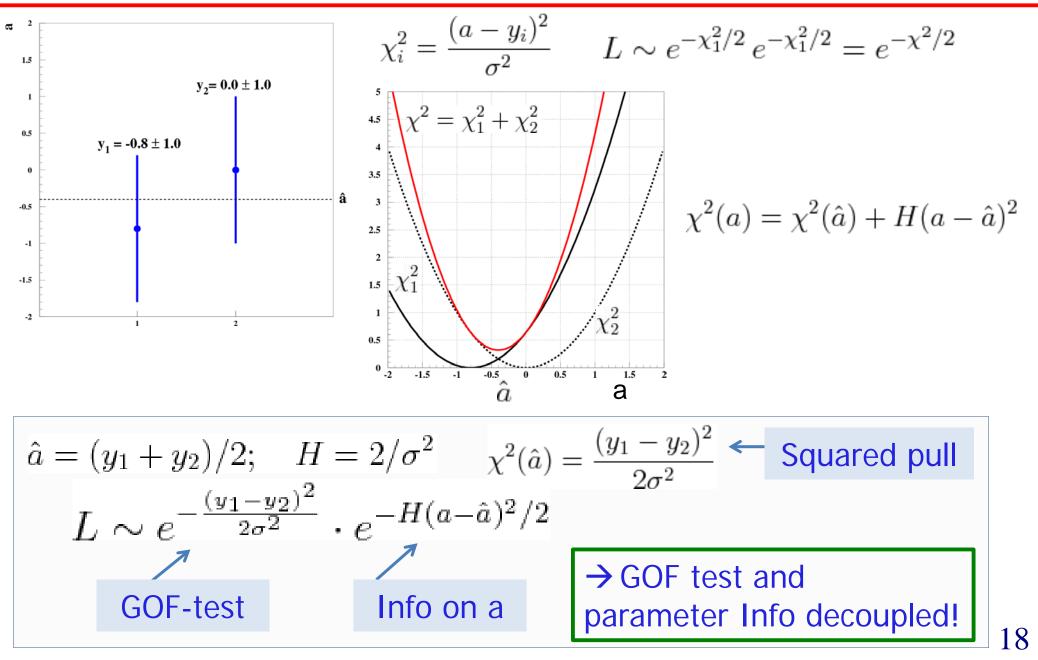
- ✓ Signal Extraction (!!)
- Comparisons to theory (!!)
- → essential for understanding/control of analysis
 results and theory!

→ Apply ≥ two different tests, e.g $\tilde{\chi}^2$ and K.S.



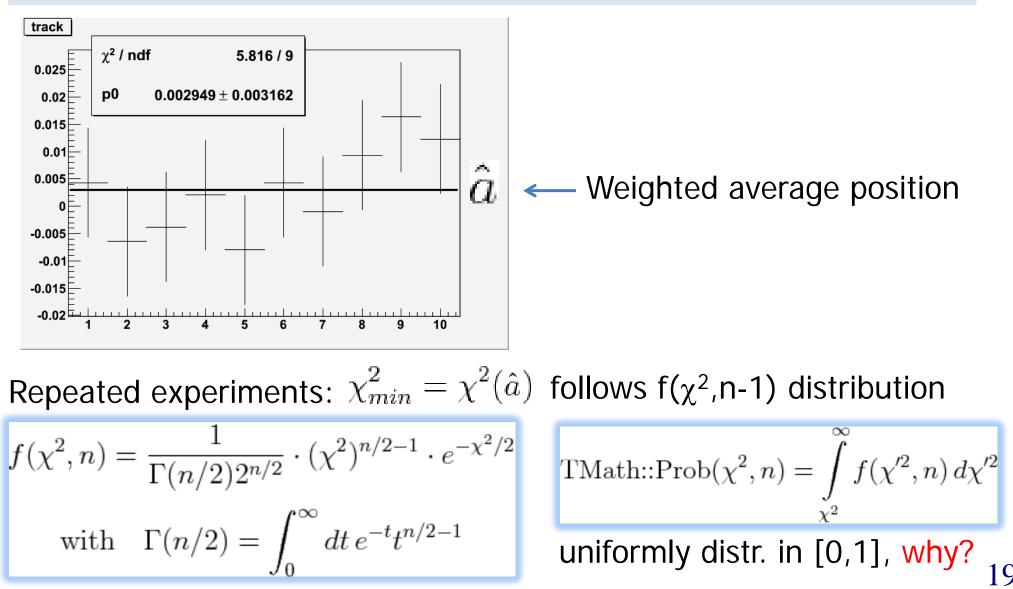


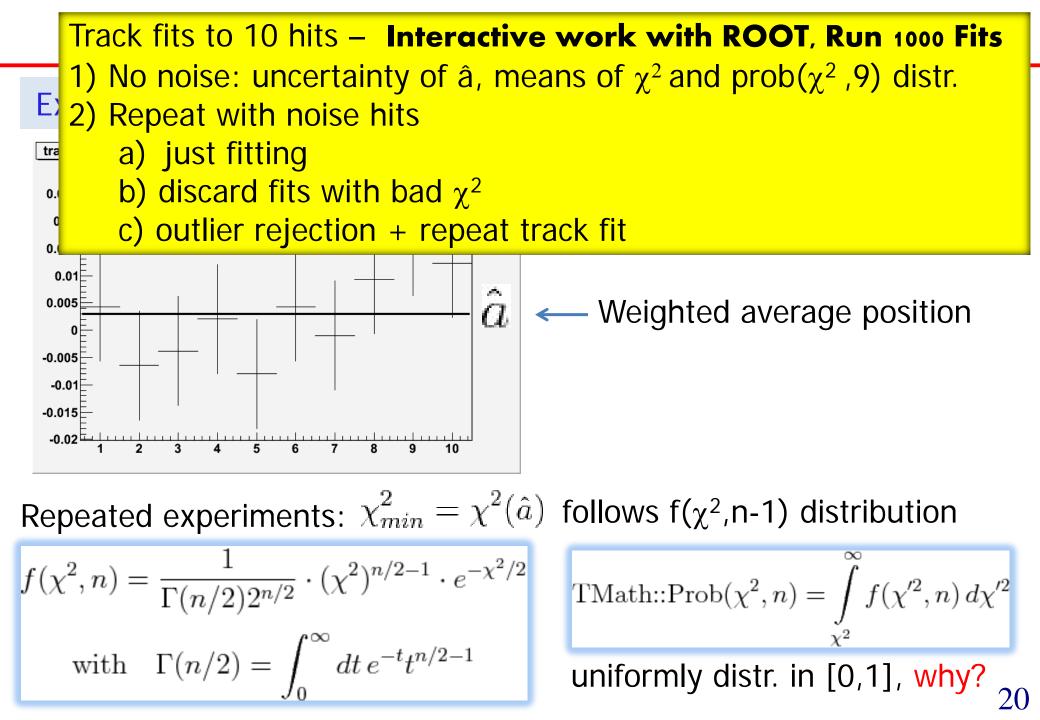
Role of χ^2 : Combination of two measurements

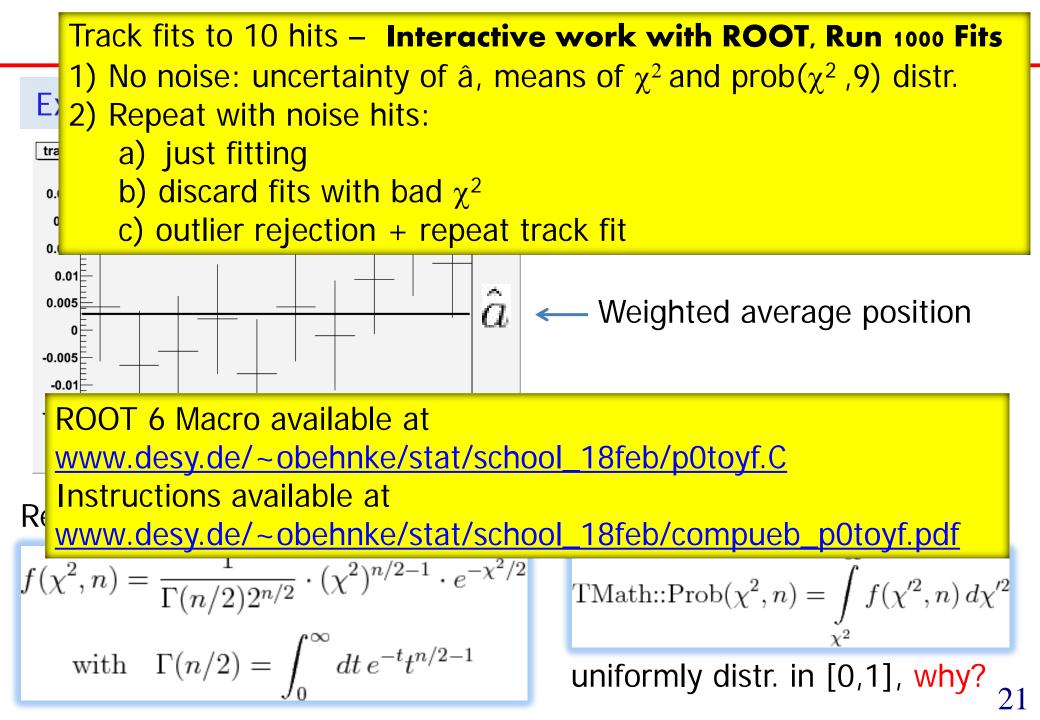


Combination of n measurements

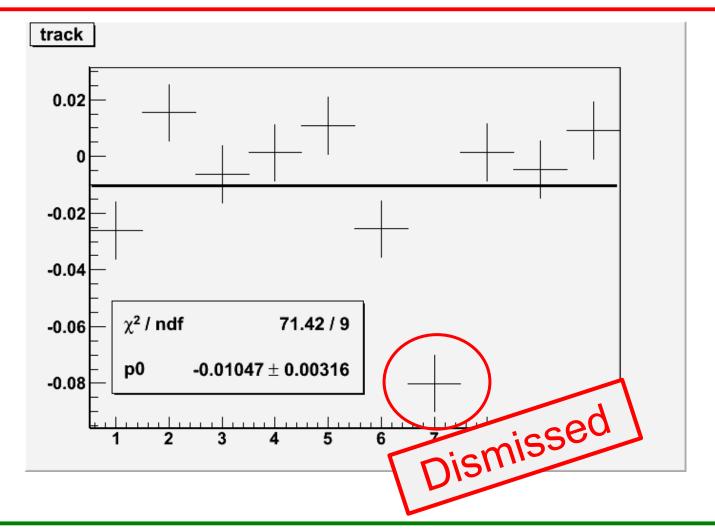
Example: track fit of horizontally flying particle in n detector layers







χ^2 tests for outlier rejection - Summary

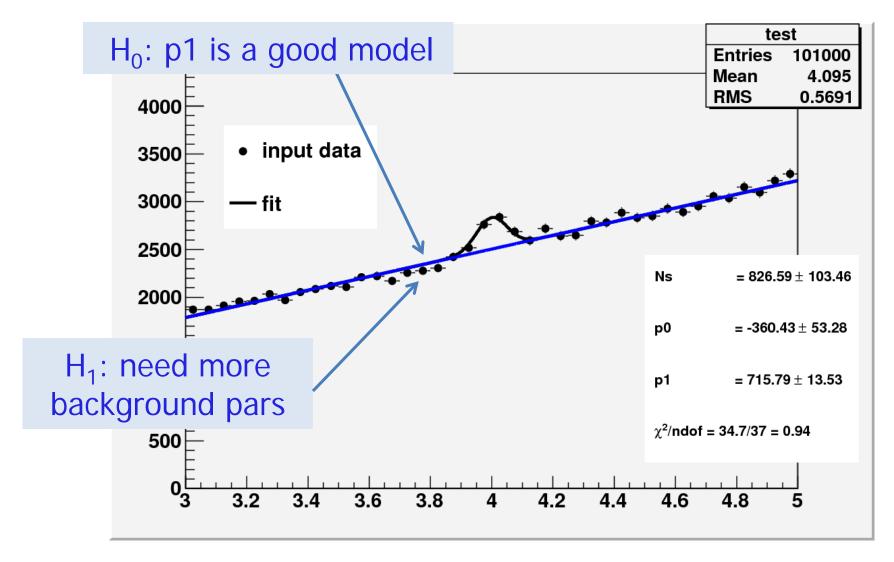


2

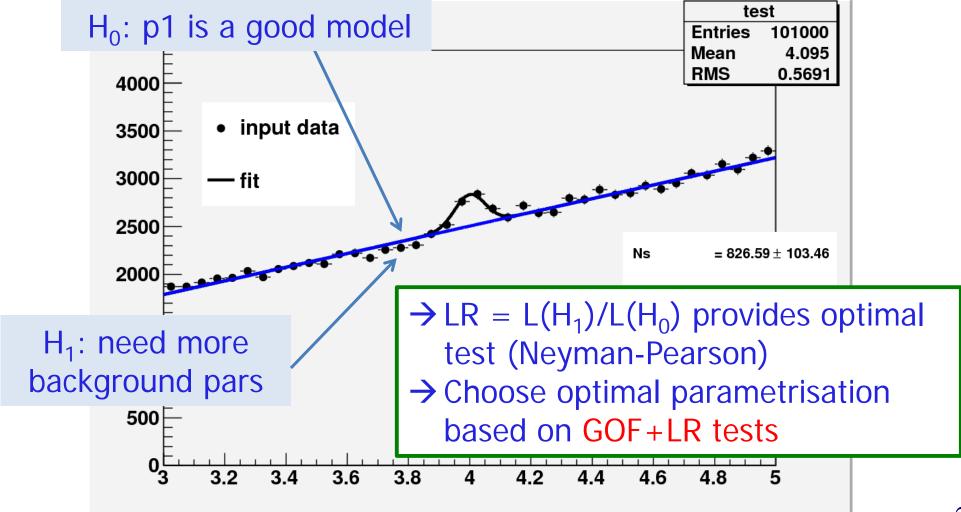
 \rightarrow Can use χ^2 tests as powerful tool for Pattern recognition tasks

Note: Rejecting hits with $\chi^2 > 5$ is hard cut, tune (e.g. try 10)

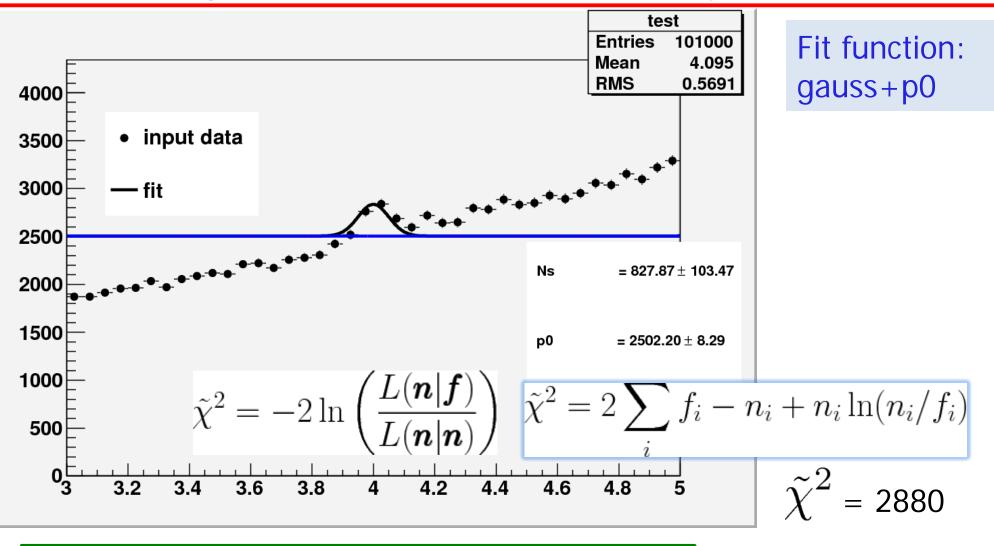
³ GOF+Likelihood-ratio tests for optimal background parametrisation



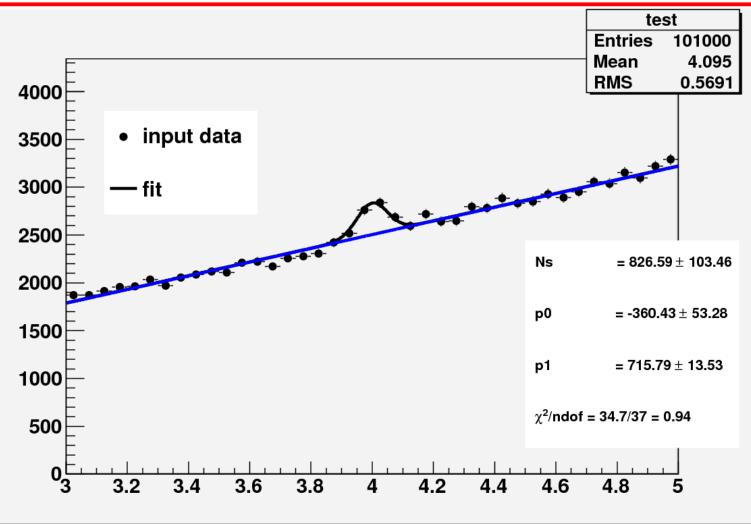
³ GOF+Likelihood-ratio tests for optimal background parametrisation



#of background fit pars - How many are needed?



 \rightarrow Very poor fit: TMath::Prob(2880,38) = 0.

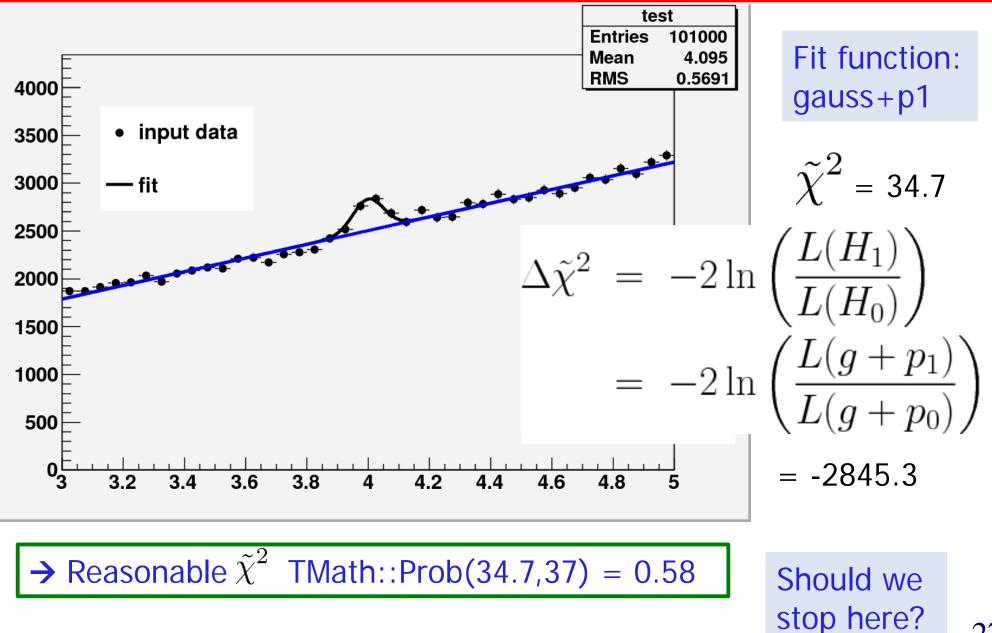


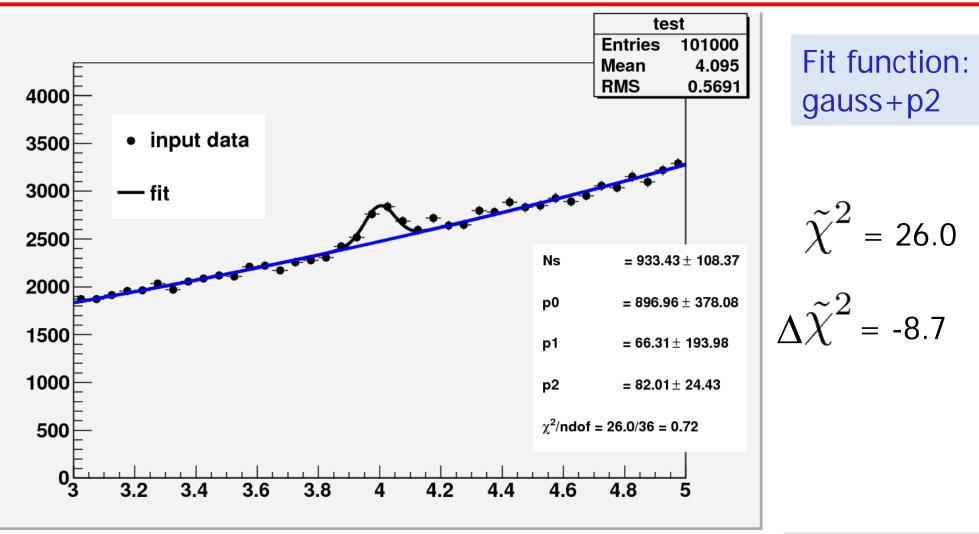
Fit function: gauss+p1

$$\tilde{\chi}^2$$
 = 34.7

 \rightarrow Reasonable $\tilde{\chi}^2$ TMath::Prob(34.7,37) = 0.58

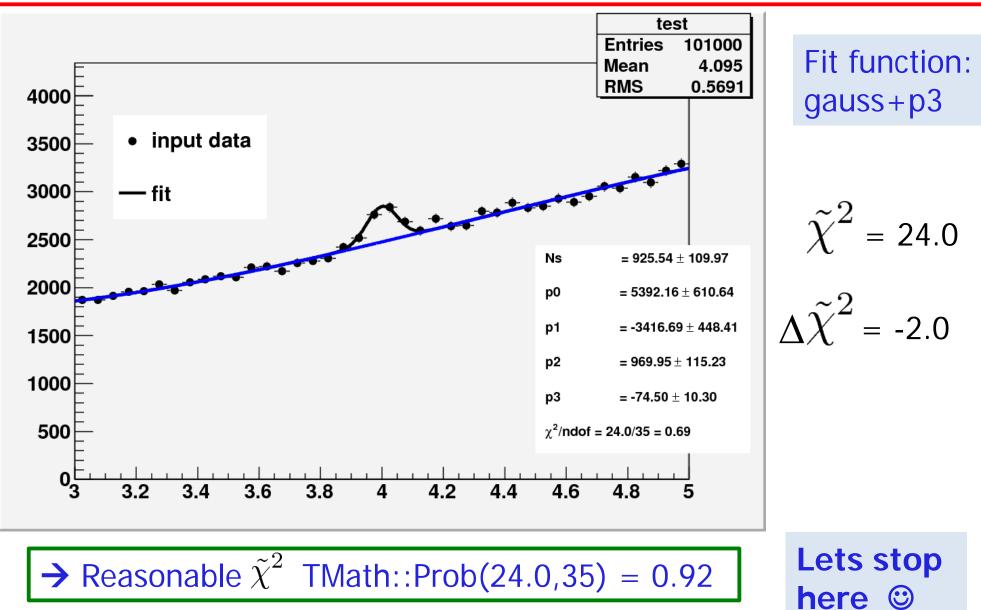
Should we stop here?

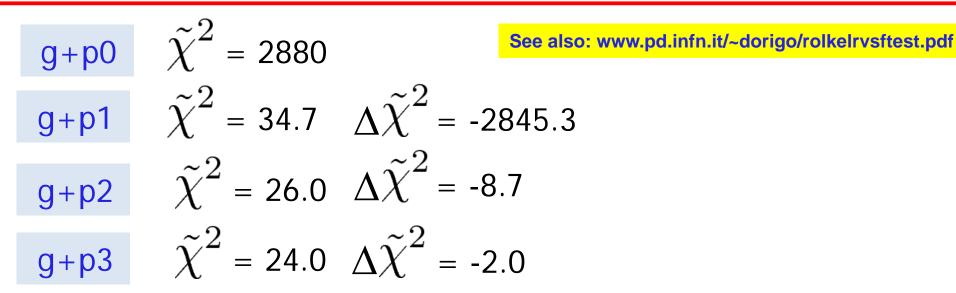




→ Reasonable $\tilde{\chi}^2$ TMath::Prob(26.0,36) = 0.89

Should we stop here?





When to stop adding further parameters?

H₀ Hypo: Additional parameter not needed (= zero) If H₀ correct then according to Wilks' theorem: $-\Delta \tilde{\chi}^2$ should follow χ^2 function with ndf=1 (in asymptotic regime of large n)

TMath::Prob(8.7,1) = $0.003 \rightarrow g+p2$ favoured over g+p1Tmath::Prob(2.0,1) = $0.15 \rightarrow g+p3$ not favoured over g+p2

Gaussian z-scores: $\sqrt{8.7}$ ~3 and $\sqrt{2}$ =1.4

Wilks' theorem

- H₀: Additional parameters (as predicted by H₁) not needed (= zero)
- If H₀ correct then according to Wilks' theorem: -Δχ̃² = -2ln[L(H₁)/L(H₀)] should follow for n→∞ χ² function with ndf = #added parameters (e.g. ndf = 3 for p2 → p5)

Samuel S. Wilks (1906-1964)

Wilks' theorem only applies for nested hypotheses:
✓ H₀: 1st order polynomial → H₁: 2nd order polynomial

× H₀: 1st order polynomial → H₁: $a \cdot exp(bx+cx^2)$

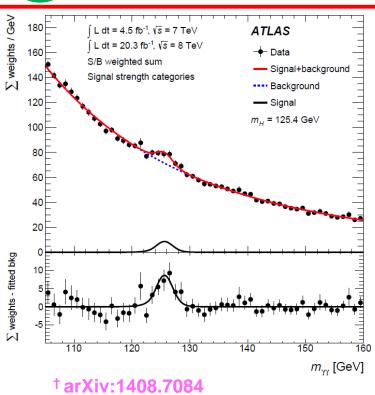
3 Optimal background parametrisation - Summary

Stop adding parameters $k \rightarrow k+1$ when \succ TMath::Prob $(\tilde{\chi}_k^2, ndf) > 5\%$ \succ TMath::Prob $(\tilde{\chi}_{k+1}^2 - \tilde{\chi}_k^2, 1) > 5\%$

Equivalent
$$\tilde{\chi}_{k+1}^2 vs \tilde{\chi}_k^2$$
 test:
> Fisher F-test

What about background shape systematics? → Discuss next

Background shape systematics: intro+spurious signal



Phys. Rev. D90, 112015 (2014)

Conventional shape systematics:

- repeat fits with different functions (e.g. polynomials, exponential)
- changes on signal strength $\mu \rightarrow \Delta \mu_{sys}^{bgr}$

Spurious signal idea[†]: absorb systematics in fit function $f = \mu \cdot signal + \mu' \cdot signal + bgr$ with $\mu' = extra$ fit par. for spurious signal

constraint on μ'

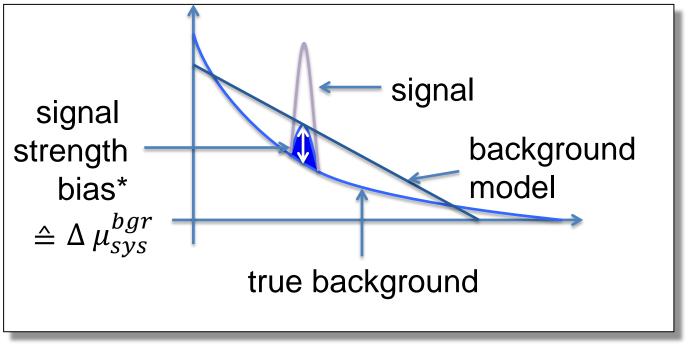
$$\tilde{\chi}^2 = 2\left[\sum_i f_i - n_i - n_i \ln \frac{f_i}{n_i}\right] + \left[\frac{\mu'}{\Delta \mu_{sys}^{bgr}}\right]^2$$

→ effective way of treating systematics as statistical uncertainty
 → Perhaps looks a bit 'ugly'?

Spurious signal in practice

Determine $\Delta \mu_{sys}^{bgr}$ from MC background toys

• generate with one function \rightarrow fit with another function + signal



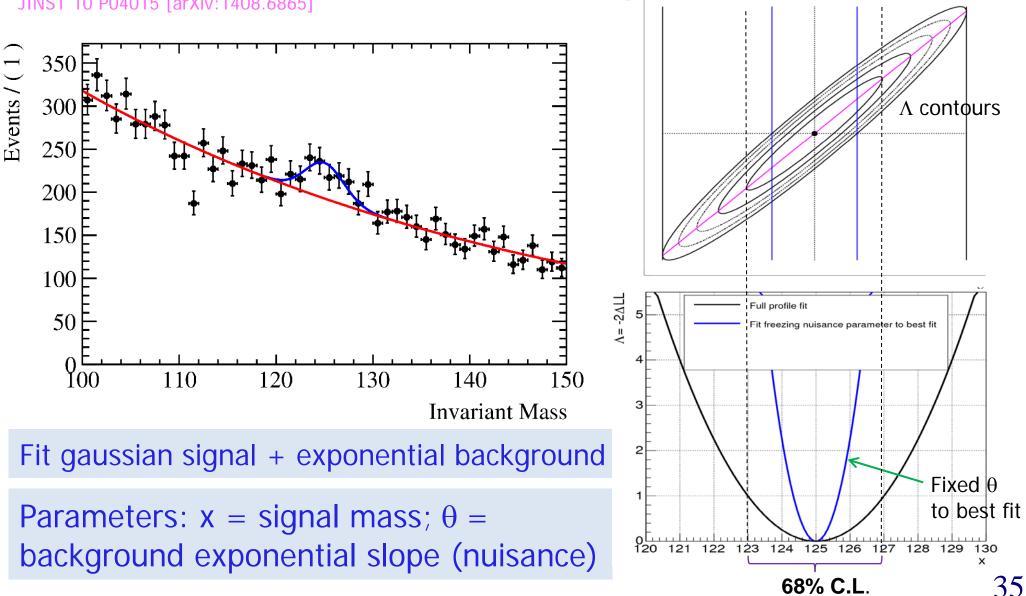
*too little signal measured in this case

 \rightarrow Lets look now at another method used in CMS

Discrete profiling method

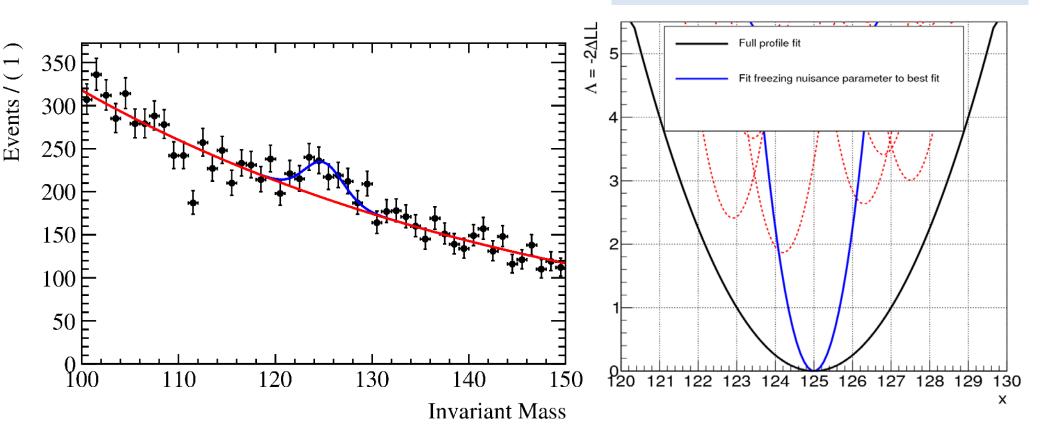
P. Dauncey, M. Kenzie, N. Wardle and G. Davies JINST 10 P04015 [arXiv:1408.6865]

Standard Profile likelihood: Scan $\Lambda = -2\Delta \ln(L)$ vs x; profiling θ



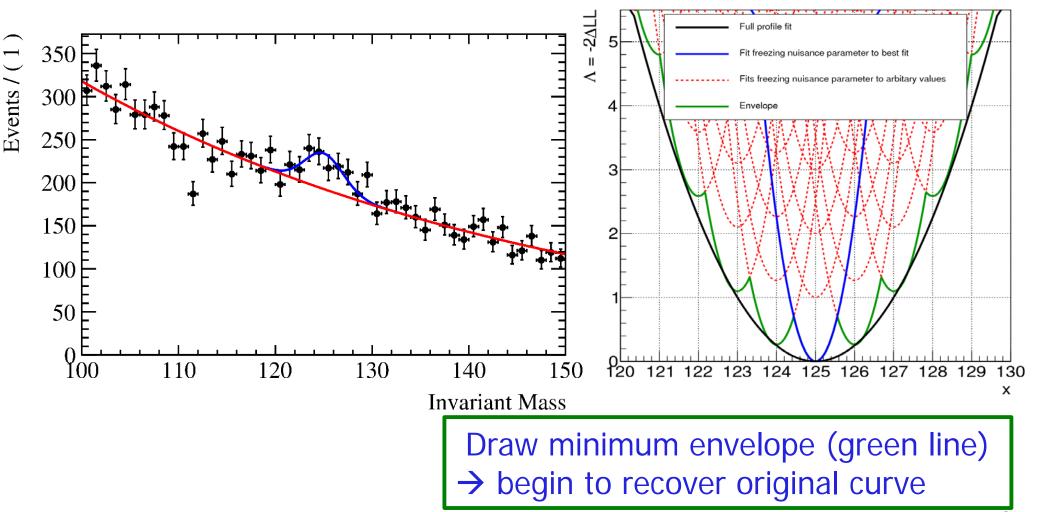
Play around with nuisance parameter

Fix θ to a few random values \rightarrow red dashed lines



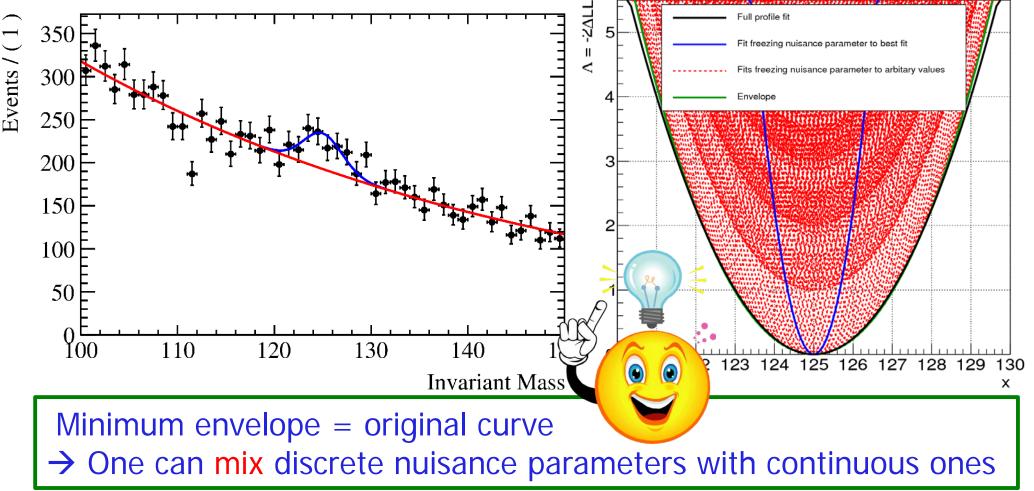
Play around with nuisance parameter

Fix θ to **many** random values \rightarrow more red dashed lines



Play around with nuisance parameter

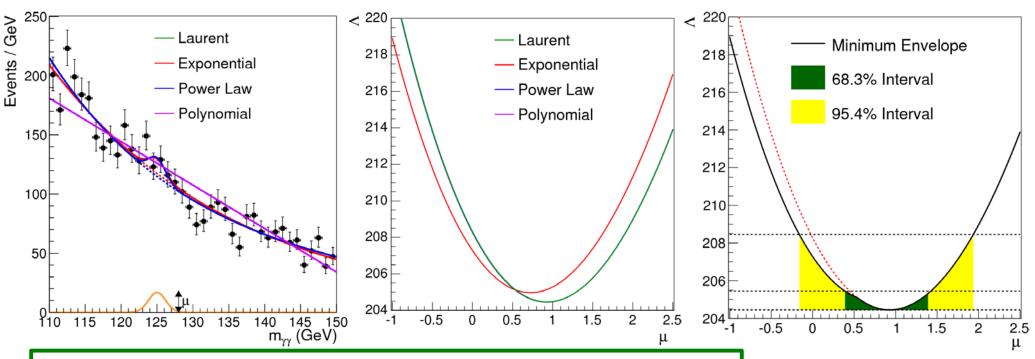
Fix θ to **huge number** of random values \rightarrow more red dashed lines



A more realistic example

Fit μ ·signal-model + background $\Lambda = 2\left[\sum f_i - n_i - n_i \ln \frac{J_i}{n_i}\right]$ (Baker-Cousins $\tilde{\chi}^2$)

Test background functions with same #fit parameters



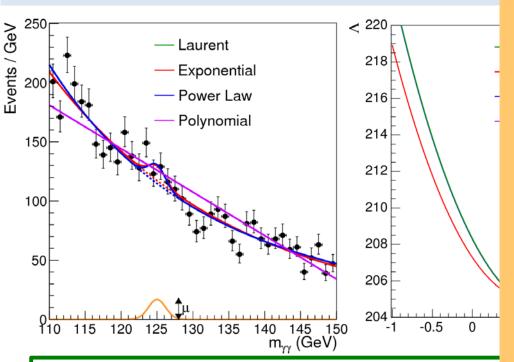
- → Minimum envelope provides:
 - best fit value $~~\hat{\mu}$
 - Confidence interval ($\Delta \Lambda \leq 1$)
 - Systematic from background model choice

A more realistic example

Fit μ ·signal-model + background

$$\Lambda = 2 [\sum_{i} f_i - n_i - n_i \ln rac{f_i}{n_i}]$$
 (Baker-Cousins $ilde{\chi}^2$

Test background functions with sar

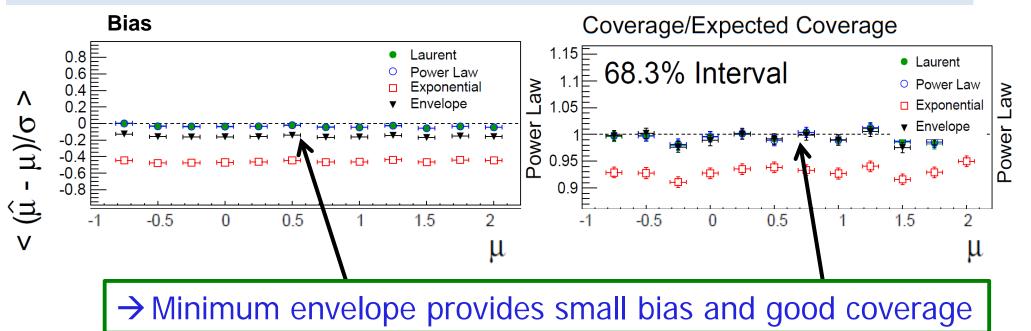


- → Minimum envelope provides:
 - best fit value $~~\hat{\mu}$
 - Confidence interval ($\Delta \Lambda \leq 1$)
 - Systematic from background model choice

Are we yet at the beach?

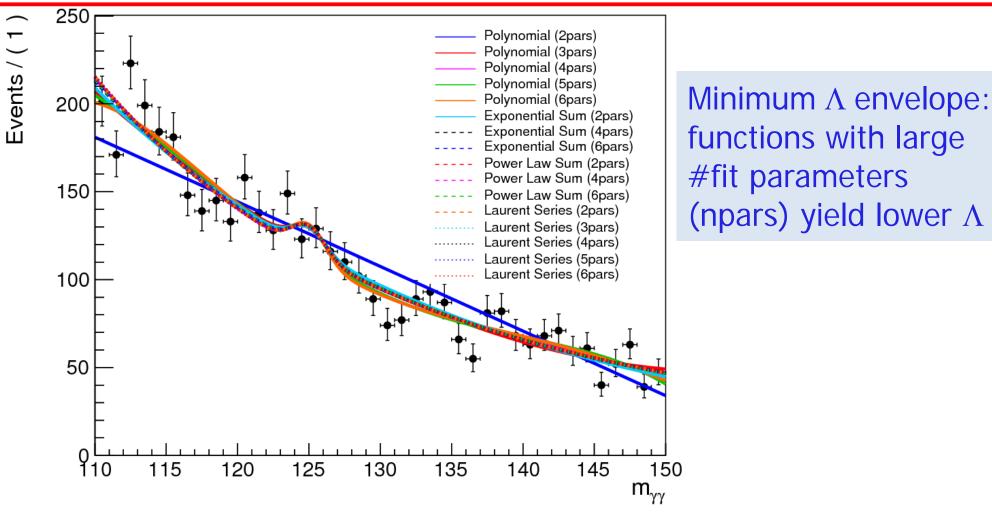
Bias and Coverage

Generate toy MC from various background hypotheses and study bias and coverage[†] of fitted $\hat{\mu}$ as function of generated true μ



[†]Coverage: correct coverage means that in 68.3% of repeated experiments the true parameter value is contained within the estimated ± 1 sigma region.

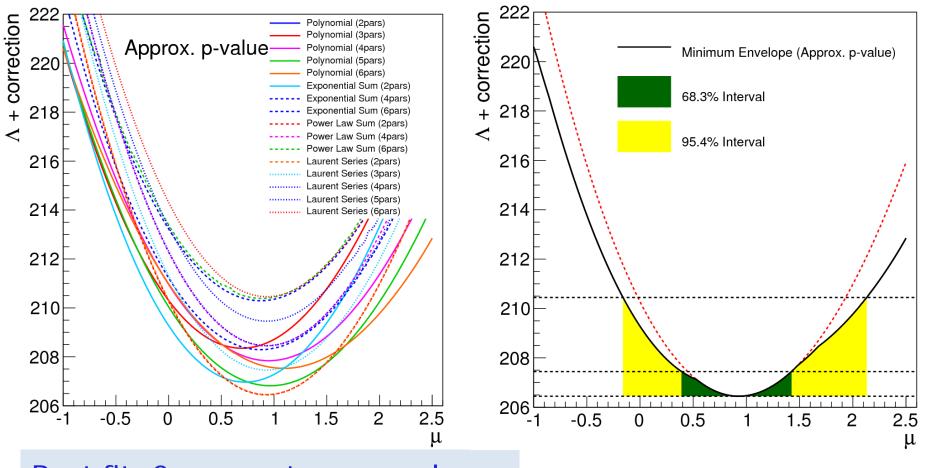
Fits with background functions of different orders



\rightarrow need to correct Λ for different npars

 $\Lambda = -2\ln(L) + c \text{ npars}$ $c=1 \triangleq$ "approximate p-value correction"

A scans and minimum envelope $\Lambda = -2\ln(L) + c$ npars; c=1



Best fit: 2 parameter power law

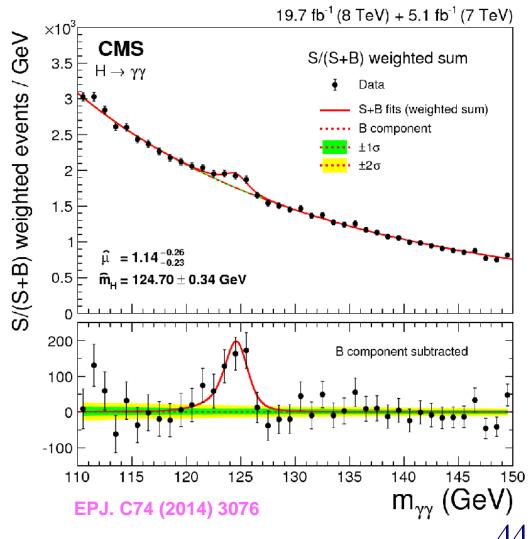
Choice of c:

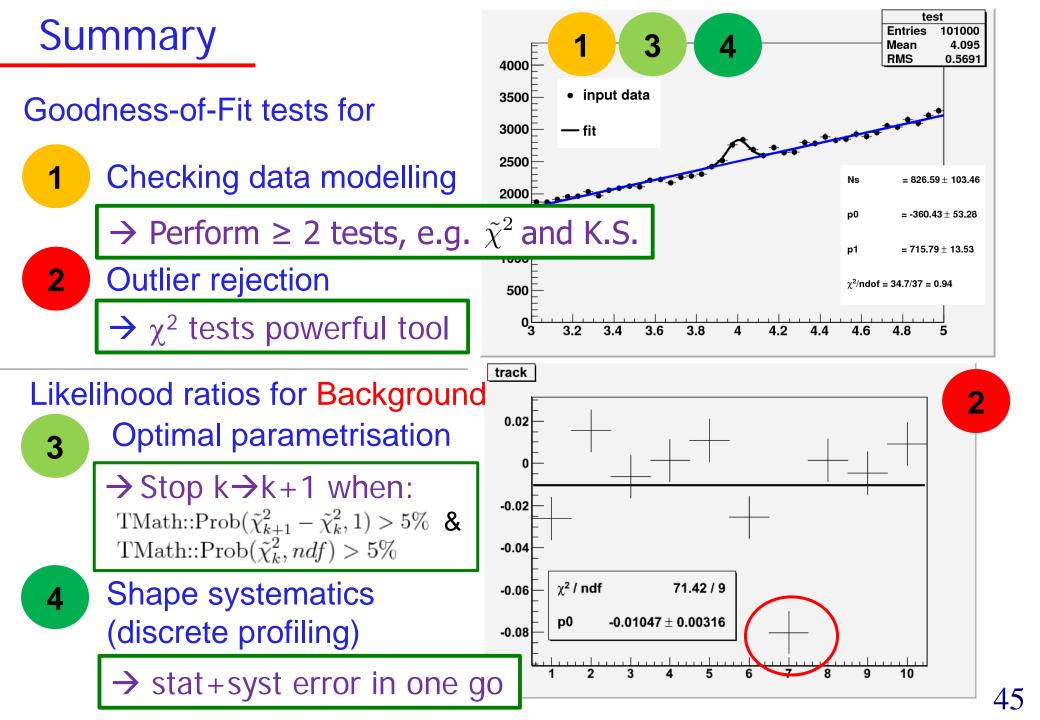
- Large, e.g. 5 \rightarrow prefer lower order functions \rightarrow potential biases
- Small, e.g. 0.1 \rightarrow prefer higher order functions \rightarrow blow up σ_{stat}

43

Summary of Discrete Profile Likelihood method

- Choices (open questions):
 - Function models to include?
 - ≻ c term
- > Method has been used e.g. in CMS H $\rightarrow \gamma\gamma$ analysis





Final riddle – part I
Meggie has two children and the older one is a girl
→ What is the probability that the other child is also a girl?

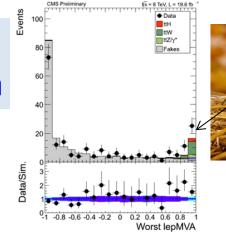
Martin Gardner, "the two-child problem," Scientific American, 1959

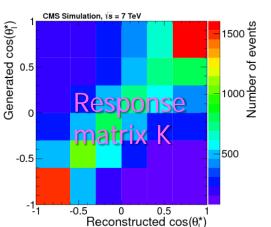
Final riddle – part II From all families with two children, at least one of whom is a girl, a family is chosen at random → What is the probability that both children are girls?

Backup slides

Statistical Data Analysis – typical tasks

Optimal
 S/B separation

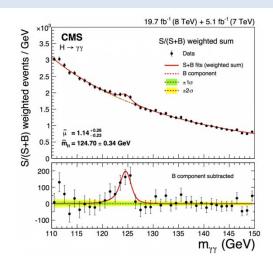




3. Unfolding differential σ

4. Systematic uncertainties

2. Signal searches, fits of all kind of interesting physics parameters to data and limits



5. Data combination

