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Goodness-of-Fit tests for 

1 Checking data modelling 

2 Outlier rejection 

Likelihood ratio tests for  
background  

3 Optimal parametrisation 

4 Shape systematics  
(discrete profiling) 

1 3 4 
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GOF tests for  
checking data modelling  
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Searches with Likelihood ratio 

CMS-PAS-B2G-16-022 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 



5 

Searches with Likelihood ratio 

CMS-PAS-B2G-16-022 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 

What if the 
background is 
mismodelled? 

⇒ Don’t trust a 
damn thing !! 
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Searches with Likelihood ratio 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 

Proper modelling of 
background over whole 
range is essential  do 
GOF-tests for H0! 

CMS-PAS-B2G-16-022 
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Searches with Likelihood ratio 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 

Proper modelling of 
background over whole 
range is essential  do 
GOF-tests for H0! 

CMS-PAS-B2G-16-022 

Make also sense outside 
blinded signal region! 



Goodness-Of-Fit Tests in ATLAS and CMS searches 

“Good agreement  
(optical inspection of ratio) 
between the data and the 
background prediction” 

ATLAS-CONF-2016-062 
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Diboson resonance 



Goodness-Of-Fit Tests in ATLAS and CMS searches 
arXiv:1509.06051v2 

“This test (optical pull inspection) shows good 
agreement between data and SM ” 

 Optical inspection of bin-wise pulls is crucial but should do 
also global tests as discussed in the following slides! 
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Goodness-Of-Fit Tests – basics 
Basic question: how well does H0 describe the data? 
ni 

For GOF tests with binned data:  
compare observed event numbers ni 

with expectation values fi 

 Since no H1 specified  many different GOF tests possible 

f 
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χ2 throws away all sign and order info  not very sensitive to 
correlated shifts in a certain region. 

 apply further GOF tests to check all data/model facets! 

Goodness-Of-Fit Test – χ2  tests 

 correlated +shifts     
χ2 = 20.1 χ2 = 24.2 

Note: p-values for χ2:   TMath::Prob(χ2
obs,ndf)  
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Test result ok   

GOF-tests: exemplary analysis  

 Likelihood ratio 
improved χ2 test     

 Hypothetical pp data@100 TeV     

S. Baker & R.D. Cousins, 
 NIM 221 (1984) 437  

 Analysed 
with CMS 

combine tool   

 Saturated model     
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Test result bad!   

 Kolgomorov-
Smirnov test      

 correlated shift?     

GOF-tests: exemplary analysis  

 Analysed 
with CMS 

combine tool   

 Hypothetical pp data@100 TeV     
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 Anderson-
Darling test      

Test result bad!   

 Analysed 
with CMS 

combine tool   

GOF-tests: exemplary analysis   Hypothetical pp data@100 TeV     

 correlated shift?     
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 Goodness of Fit - Run test   Idea: count runs = regions 
with same sign of deviation 

Runs 

r    = #runs 
N+ = #bins  data>model 
N_ = #bins  data<model 

r  should follow Binomial statist. 

Approximate 
Significance 

 Easy to do test! 

Example from “Data Analysis in High Energy Physics”  Wiley-VCH 
Edited by O.B., K. Kroeninger, G. Schott, T. Schoerner-Sadenius 

Here: r=6, E(r)=10.6±2.1   
 p-value = 0.0285 
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Summary GOF tests of modelling 

Perform GOF tests through various analysis stages: 
 Control plots (!) 
 Signal Extraction (!!) 
 Comparisons to theory (!!) 
essential for understanding/control of analysis 

results and theory! 

Apply ≥ two different tests, e.g      and K.S. 

1 



 Use χ2 tests for  
outlier rejection 

17 

2 
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Role of χ2: Combination of two measurements  

GOF test and  
parameter Info decoupled!  

a 

Info on a GOF-test 

Squared pull 
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Combination of n measurements 
Example: track fit of horizontally flying particle in n detector layers 

Weighted average position  

follows f(χ2,n-1) distribution Repeated experiments:  

uniformly distr. in [0,1], why? 
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Combination of n measurements 
Example: track fit of horizontally flying particle in n detector layers 

Weighted average position  

follows f(χ2,n-1) distribution Repeated experiments:  

uniformly distr. in [0,1], why? 

Track fits to 10 hits –  Interactive work with ROOT, Run 1000 Fits 

1) No noise: uncertainty of â, means of χ2
 and prob(χ2 ,9) distr. 

2) Repeat with noise hits  
     a) just fitting 
     b) discard fits with bad χ2  
     c) outlier rejection + repeat track fit 
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Combination of n measurements 
Example: track fit of horizontally flying particle in n detector layers 

Weighted average position  

follows f(χ2,n-1) distribution Repeated experiments:  

uniformly distr. in [0,1], why? 

ROOT 6 Macro available at  
www.desy.de/~obehnke/stat/school_18feb/p0toyf.C 
Instructions available at  
www.desy.de/~obehnke/stat/school_18feb/compueb_p0toyf.pdf  

Track fits to 10 hits –  Interactive work with ROOT, Run 1000 Fits 

1) No noise: uncertainty of â, means of χ2
 and prob(χ2 ,9) distr. 

2) Repeat with noise hits: 
     a) just fitting 
     b) discard fits with bad χ2  
     c) outlier rejection + repeat track fit 

http://www.desy.de/%7Eobehnke/stat/schoolfeb18/p0toyf.C
http://www.desy.de/%7Eobehnke/stat/school_18feb/compueb_p0toyf.pdf


χ2 tests for outlier rejection - Summary  2 

Can use χ2 tests as powerful tool for Pattern recognition tasks 

Note: Rejecting hits with χ2 >5 is hard cut, tune (e.g. try 10) 22 



 GOF+Likelihood-ratio tests for  
optimal background parametrisation 

H1: need more 
background pars       

 H0: p1 is a good model      

23 
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 GOF+Likelihood-ratio tests for  
optimal background parametrisation 

H1: need more 
background pars       

 H0: p1 is a good model      

24 

LR = L(H1)/L(H0) provides optimal 
test (Neyman-Pearson) 

Choose optimal parametrisation 
based on GOF+LR tests 

3 
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#of background fit pars – How many are needed? 

Fit function:  
gauss+p0 

= 2880  

 Very poor fit: TMath::Prob(2880,38) = 0.  
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Fit function:  
gauss+p1 

= 34.7  

 Reasonable      TMath::Prob(34.7,37) = 0.58  Should we 
stop here? 

#of background fit pars  
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Fit function:  
gauss+p1 

= 34.7  

 Reasonable      TMath::Prob(34.7,37) = 0.58  

= -2845.3  

Should we 
stop here? 

#of background fit pars  



28 

Fit function:  
gauss+p2 

= 26.0  

 Reasonable      TMath::Prob(26.0,36) = 0.89  

∆  = -8.7  

Should we 
stop here? 

#of background fit pars  



29 

Fit function:  
gauss+p3 

= 24.0  

 Reasonable      TMath::Prob(24.0,35) = 0.92 

∆  = -2.0  

Lets stop 
here    

#of background fit pars  
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 g+p0 

= 24.0  

 TMath::Prob(8.7,1) = 0.003  g+p2  favoured over g+p1 
 Tmath::Prob(2.0,1) = 0.15   g+p3  not favoured over g+p2  

∆  = -2.0  

= 26.0  ∆  = -8.7  

= 34.7  ∆  = -2845.3  

= 2880  

 g+p1 

 g+p2 

 g+p3 

H0 Hypo: Additional parameter not needed (= zero) 

If H0 correct then according to Wilks’ theorem: –∆     should 
follow χ2 function with ndf=1  (in asymptotic regime of large n) 

When to stop adding further parameters? 

See also: www.pd.infn.it/~dorigo/rolkelrvsftest.pdf 

#of background fit pars  

Gaussian z-scores:√8.7~3 and √2=1.4   



H0: Additional parameters (as predicted by H1)  not 
needed (= zero) 
If H0 correct then according to Wilks’ theorem:     

    –∆    = -2ln[L(H1)/L(H0)] should follow for n∞  
    χ2 function with ndf = #added parameters  
    (e.g. ndf = 3 for p2  p5) 
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Wilks’ theorem  

Wilks’ theorem only applies for nested hypotheses: 
 H0: 1st order polynomial  H1: 2nd order 

polynomial 
H0: 1st order polynomial  H1:  a∙exp(bx+cx2)  

Samuel S. Wilks 
(1906-1964)  



Optimal background parametrisation - Summary  

32 

3 

Stop adding parameters k  k+1 when  
 . 
   . 

Equivalent          vs        test: 
 Fisher F-test 

What about background shape systematics? 

   Discuss next 
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Background shape systematics: intro+spurious signal 
Conventional shape systematics: 
• repeat fits with different functions (e.g. 

polynomials, exponential)  
• changes on signal strength 𝜇𝜇 → Δ 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠

𝑏𝑏𝑏𝑏𝑏𝑏 

Spurious signal idea†: absorb systematics in 
fit function f = 𝜇𝜇 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜇𝜇′ ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + bgr 
with 𝜇𝜇𝜇 = extra fit par. for spurious signal  

 effective way of treating systematics as statistical uncertainty  
Perhaps looks a bit ‘ugly’? 

 constraint on µ’ 
† arXiv:1408.7084  
Phys. Rev. D90, 112015 (2014)  

4 
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Spurious signal in practice  

Determine  Δ 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠
𝑏𝑏𝑏𝑏𝑏𝑏 from MC background toys  

• generate with one function  fit with another function + signal   

signal 

true background 

signal  
strength 

bias* 
background 
model 

*too little signal measured in this case 

arXiv:1408.7084  
Phys. Rev. D90, 112015 (2014)  

 Lets look now at another method used in CMS 

≙ Δ 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠
𝑏𝑏𝑏𝑏𝑏𝑏 
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Discrete profiling method 
P. Dauncey, M. Kenzie, N. Wardle and G. Davies  
JINST 10 P04015 [arXiv:1408.6865] 

Fit gaussian signal + exponential background 

Parameters: x = signal mass; θ =  
background exponential slope (nuisance)  

Standard Profile likelihood: 
Scan Λ =-2∆ln(L) vs x; profiling θ 

Λ contours 

Fixed θ 
to best fit 

68% C.L. 
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Play around with nuisance parameter 

Fix θ to a few random 
values  red dashed lines 
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Play around with nuisance parameter 

Fix θ to many random values 
 more red dashed lines 

 Draw minimum envelope (green line) 
 begin to recover original curve 
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Play around with nuisance parameter 

Fix θ to huge number of  random 
values  more red dashed lines 

 Minimum envelope = original curve  
 One can mix discrete nuisance parameters with continuous ones  
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A more realistic example 

Fit 𝜇𝜇 ⋅signal-model + background (Baker-Cousins     )  Λ 

Test background functions with same #fit parameters 

Minimum envelope provides: 
• best fit value      
• Confidence interval (ΔΛ ≤ 1)  
• Systematic from background model choice 
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A more realistic example 

Fit 𝜇𝜇 ⋅signal-model + background (Baker-Cousins     )  Λ 

Test background functions with same #fit parameters 

Minimum envelope provides: 
• best fit value      
• Confidence interval (ΔΛ ≤ 1)  
• Systematic from background model choice 

Are we yet at the beach? 

NO! 
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Bias and Coverage  

Generate toy MC from various background hypotheses and study 
bias and coverage† of fitted     as function of generated true µ  

†Coverage:  correct coverage means that in 68.3% of repeated experiments the 
true parameter value is contained within the estimated  ±1 sigma region.  

Minimum envelope provides small bias and good coverage  

Bias 
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Fits with background functions of different orders 

 need to correct Λ for different npars  

Λ = -2ln(L) + c npars c=1 ≙  “approximate p-value correction”  

Minimum Λ envelope:  
functions with large 
#fit parameters  
(npars) yield lower Λ 
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Λ scans and minimum envelope Λ = -2ln(L) + c npars;  c=1 

Best fit: 2 parameter power law  

Choice of c:  
• Large, e.g. 5   prefer lower order functions  potential biases 
• Small, e.g. 0.1 prefer higher order functions blow up σstat  



Summary of Discrete Profile Likelihood method  

44 

 Method shows good coverage in toy experiments  perform toy 
experiments for your specific analyses 

 Choices (open questions): 
 function models to include? 
 c term 

 Method has been used e.g. 
    in CMS H  γγ analysis 

 

EPJ. C74 (2014) 3076  



Summary  
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Goodness-of-Fit tests for 

1 Checking data modelling 

2 Outlier rejection 

Likelihood ratios for Background  

3 Optimal parametrisation 

4 Shape systematics  
(discrete profiling) 

1 3 4 

2 

 Perform ≥ 2 tests, e.g.     and K.S.  

 χ2 tests powerful tool  

 stat+syst error in one go 

Stop kk+1 when:   
                                  & 
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Final riddle – part I 
Meggie has two children and  

the older one is a girl 
 What is the probability that the 

other child is also a girl? 
   

Martin Gardner, “the two-child 
problem,” Scientific American, 1959 
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Final riddle – part II 
From all families with two children, at 
least one of whom is a girl, a family is 

chosen at random  What is the 
probability that both children are girls? 
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Backup slides 



Statistical Data Analysis – typical tasks  

49 

1. Optimal  
S/B separation  

2. Signal searches,  
fits of all kind of interesting 
physics parameters to data 

and limits  

3. Unfolding 
differential σ 

4. Systematic uncertainties 

5. Data combination  

Response 
matrix K 
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