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Goodness-of-Fit tests for 

1 Checking data modelling 

2 Outlier rejection 

Likelihood ratio tests for  
background  

3 Optimal parametrisation 

4 Shape systematics  
(discrete profiling) 

1 3 4 
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GOF tests for  
checking data modelling  
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Searches with Likelihood ratio 

CMS-PAS-B2G-16-022 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 
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Searches with Likelihood ratio 

CMS-PAS-B2G-16-022 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 

What if the 
background is 
mismodelled? 

⇒ Don’t trust a 
damn thing !! 
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Searches with Likelihood ratio 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 

Proper modelling of 
background over whole 
range is essential  do 
GOF-tests for H0! 

CMS-PAS-B2G-16-022 
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Searches with Likelihood ratio 

H0: µ=0, H1: µ>0 

Neyman-Pearson: 
L(H1)/L(H0)  
 max. power test 
 Use for discovery 

Proper modelling of 
background over whole 
range is essential  do 
GOF-tests for H0! 

CMS-PAS-B2G-16-022 

Make also sense outside 
blinded signal region! 



Goodness-Of-Fit Tests in ATLAS and CMS searches 

“Good agreement  
(optical inspection of ratio) 
between the data and the 
background prediction” 

ATLAS-CONF-2016-062 
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Diboson resonance 



Goodness-Of-Fit Tests in ATLAS and CMS searches 
arXiv:1509.06051v2 

“This test (optical pull inspection) shows good 
agreement between data and SM ” 

 Optical inspection of bin-wise pulls is crucial but should do 
also global tests as discussed in the following slides! 
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W’  tb 
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Goodness-Of-Fit Tests – basics 
Basic question: how well does H0 describe the data? 
ni 

For GOF tests with binned data:  
compare observed event numbers ni 

with expectation values fi 

 Since no H1 specified  many different GOF tests possible 

f 
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χ2 throws away all sign and order info  not very sensitive to 
correlated shifts in a certain region. 

 apply further GOF tests to check all data/model facets! 

Goodness-Of-Fit Test – χ2  tests 

 correlated +shifts     
χ2 = 20.1 χ2 = 24.2 

Note: p-values for χ2:   TMath::Prob(χ2
obs,ndf)  



12 

Test result ok   

GOF-tests: exemplary analysis  

 Likelihood ratio 
improved χ2 test     

 Hypothetical pp data@100 TeV     

S. Baker & R.D. Cousins, 
 NIM 221 (1984) 437  

 Analysed 
with CMS 

combine tool   

 Saturated model     
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Test result bad!   

 Kolgomorov-
Smirnov test      

 correlated shift?     

GOF-tests: exemplary analysis  

 Analysed 
with CMS 

combine tool   

 Hypothetical pp data@100 TeV     
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 Anderson-
Darling test      

Test result bad!   

 Analysed 
with CMS 

combine tool   

GOF-tests: exemplary analysis   Hypothetical pp data@100 TeV     

 correlated shift?     
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 Goodness of Fit - Run test   Idea: count runs = regions 
with same sign of deviation 

Runs 

r    = #runs 
N+ = #bins  data>model 
N_ = #bins  data<model 

r  should follow Binomial statist. 

Approximate 
Significance 

 Easy to do test! 

Example from “Data Analysis in High Energy Physics”  Wiley-VCH 
Edited by O.B., K. Kroeninger, G. Schott, T. Schoerner-Sadenius 

Here: r=6, E(r)=10.6±2.1   
 p-value = 0.0285 
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Summary GOF tests of modelling 

Perform GOF tests through various analysis stages: 
 Control plots (!) 
 Signal Extraction (!!) 
 Comparisons to theory (!!) 
essential for understanding/control of analysis 

results and theory! 

Apply ≥ two different tests, e.g      and K.S. 

1 



 Use χ2 tests for  
outlier rejection 
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Role of χ2: Combination of two measurements  

GOF test and  
parameter Info decoupled!  

a 

Info on a GOF-test 

Squared pull 
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Combination of n measurements 
Example: track fit of horizontally flying particle in n detector layers 

Weighted average position  

follows f(χ2,n-1) distribution Repeated experiments:  

uniformly distr. in [0,1], why? 
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Combination of n measurements 
Example: track fit of horizontally flying particle in n detector layers 

Weighted average position  

follows f(χ2,n-1) distribution Repeated experiments:  

uniformly distr. in [0,1], why? 

Track fits to 10 hits –  Interactive work with ROOT, Run 1000 Fits 

1) No noise: uncertainty of â, means of χ2
 and prob(χ2 ,9) distr. 

2) Repeat with noise hits  
     a) just fitting 
     b) discard fits with bad χ2  
     c) outlier rejection + repeat track fit 
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Combination of n measurements 
Example: track fit of horizontally flying particle in n detector layers 

Weighted average position  

follows f(χ2,n-1) distribution Repeated experiments:  

uniformly distr. in [0,1], why? 

ROOT 6 Macro available at  
www.desy.de/~obehnke/stat/school_18feb/p0toyf.C 
Instructions available at  
www.desy.de/~obehnke/stat/school_18feb/compueb_p0toyf.pdf  

Track fits to 10 hits –  Interactive work with ROOT, Run 1000 Fits 

1) No noise: uncertainty of â, means of χ2
 and prob(χ2 ,9) distr. 

2) Repeat with noise hits: 
     a) just fitting 
     b) discard fits with bad χ2  
     c) outlier rejection + repeat track fit 

http://www.desy.de/%7Eobehnke/stat/schoolfeb18/p0toyf.C
http://www.desy.de/%7Eobehnke/stat/school_18feb/compueb_p0toyf.pdf


χ2 tests for outlier rejection - Summary  2 

Can use χ2 tests as powerful tool for Pattern recognition tasks 

Note: Rejecting hits with χ2 >5 is hard cut, tune (e.g. try 10) 22 



 GOF+Likelihood-ratio tests for  
optimal background parametrisation 

H1: need more 
background pars       

 H0: p1 is a good model      

23 
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 GOF+Likelihood-ratio tests for  
optimal background parametrisation 

H1: need more 
background pars       

 H0: p1 is a good model      

24 

LR = L(H1)/L(H0) provides optimal 
test (Neyman-Pearson) 

Choose optimal parametrisation 
based on GOF+LR tests 

3 
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#of background fit pars – How many are needed? 

Fit function:  
gauss+p0 

= 2880  

 Very poor fit: TMath::Prob(2880,38) = 0.  
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Fit function:  
gauss+p1 

= 34.7  

 Reasonable      TMath::Prob(34.7,37) = 0.58  Should we 
stop here? 

#of background fit pars  
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Fit function:  
gauss+p1 

= 34.7  

 Reasonable      TMath::Prob(34.7,37) = 0.58  

= -2845.3  

Should we 
stop here? 

#of background fit pars  
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Fit function:  
gauss+p2 

= 26.0  

 Reasonable      TMath::Prob(26.0,36) = 0.89  

∆  = -8.7  

Should we 
stop here? 

#of background fit pars  
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Fit function:  
gauss+p3 

= 24.0  

 Reasonable      TMath::Prob(24.0,35) = 0.92 

∆  = -2.0  

Lets stop 
here    

#of background fit pars  
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 g+p0 

= 24.0  

 TMath::Prob(8.7,1) = 0.003  g+p2  favoured over g+p1 
 Tmath::Prob(2.0,1) = 0.15   g+p3  not favoured over g+p2  

∆  = -2.0  

= 26.0  ∆  = -8.7  

= 34.7  ∆  = -2845.3  

= 2880  

 g+p1 

 g+p2 

 g+p3 

H0 Hypo: Additional parameter not needed (= zero) 

If H0 correct then according to Wilks’ theorem: –∆     should 
follow χ2 function with ndf=1  (in asymptotic regime of large n) 

When to stop adding further parameters? 

See also: www.pd.infn.it/~dorigo/rolkelrvsftest.pdf 

#of background fit pars  

Gaussian z-scores:√8.7~3 and √2=1.4   



H0: Additional parameters (as predicted by H1)  not 
needed (= zero) 
If H0 correct then according to Wilks’ theorem:     

    –∆    = -2ln[L(H1)/L(H0)] should follow for n∞  
    χ2 function with ndf = #added parameters  
    (e.g. ndf = 3 for p2  p5) 
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Wilks’ theorem  

Wilks’ theorem only applies for nested hypotheses: 
 H0: 1st order polynomial  H1: 2nd order 

polynomial 
H0: 1st order polynomial  H1:  a∙exp(bx+cx2)  

Samuel S. Wilks 
(1906-1964)  



Optimal background parametrisation - Summary  

32 

3 

Stop adding parameters k  k+1 when  
 . 
   . 

Equivalent          vs        test: 
 Fisher F-test 

What about background shape systematics? 

   Discuss next 
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Background shape systematics: intro+spurious signal 
Conventional shape systematics: 
• repeat fits with different functions (e.g. 

polynomials, exponential)  
• changes on signal strength 𝜇𝜇 → Δ 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠

𝑏𝑏𝑏𝑏𝑏𝑏 

Spurious signal idea†: absorb systematics in 
fit function f = 𝜇𝜇 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜇𝜇′ ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + bgr 
with 𝜇𝜇𝜇 = extra fit par. for spurious signal  

 effective way of treating systematics as statistical uncertainty  
Perhaps looks a bit ‘ugly’? 

 constraint on µ’ 
† arXiv:1408.7084  
Phys. Rev. D90, 112015 (2014)  

4 
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Spurious signal in practice  

Determine  Δ 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠
𝑏𝑏𝑏𝑏𝑏𝑏 from MC background toys  

• generate with one function  fit with another function + signal   

signal 

true background 

signal  
strength 

bias* 
background 
model 

*too little signal measured in this case 

arXiv:1408.7084  
Phys. Rev. D90, 112015 (2014)  

 Lets look now at another method used in CMS 

≙ Δ 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠
𝑏𝑏𝑏𝑏𝑏𝑏 
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Discrete profiling method 
P. Dauncey, M. Kenzie, N. Wardle and G. Davies  
JINST 10 P04015 [arXiv:1408.6865] 

Fit gaussian signal + exponential background 

Parameters: x = signal mass; θ =  
background exponential slope (nuisance)  

Standard Profile likelihood: 
Scan Λ =-2∆ln(L) vs x; profiling θ 

Λ contours 

Fixed θ 
to best fit 

68% C.L. 
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Play around with nuisance parameter 

Fix θ to a few random 
values  red dashed lines 
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Play around with nuisance parameter 

Fix θ to many random values 
 more red dashed lines 

 Draw minimum envelope (green line) 
 begin to recover original curve 
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Play around with nuisance parameter 

Fix θ to huge number of  random 
values  more red dashed lines 

 Minimum envelope = original curve  
 One can mix discrete nuisance parameters with continuous ones  
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A more realistic example 

Fit 𝜇𝜇 ⋅signal-model + background (Baker-Cousins     )  Λ 

Test background functions with same #fit parameters 

Minimum envelope provides: 
• best fit value      
• Confidence interval (ΔΛ ≤ 1)  
• Systematic from background model choice 
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A more realistic example 

Fit 𝜇𝜇 ⋅signal-model + background (Baker-Cousins     )  Λ 

Test background functions with same #fit parameters 

Minimum envelope provides: 
• best fit value      
• Confidence interval (ΔΛ ≤ 1)  
• Systematic from background model choice 

Are we yet at the beach? 

NO! 
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Bias and Coverage  

Generate toy MC from various background hypotheses and study 
bias and coverage† of fitted     as function of generated true µ  

†Coverage:  correct coverage means that in 68.3% of repeated experiments the 
true parameter value is contained within the estimated  ±1 sigma region.  

Minimum envelope provides small bias and good coverage  

Bias 
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Fits with background functions of different orders 

 need to correct Λ for different npars  

Λ = -2ln(L) + c npars c=1 ≙  “approximate p-value correction”  

Minimum Λ envelope:  
functions with large 
#fit parameters  
(npars) yield lower Λ 
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Λ scans and minimum envelope Λ = -2ln(L) + c npars;  c=1 

Best fit: 2 parameter power law  

Choice of c:  
• Large, e.g. 5   prefer lower order functions  potential biases 
• Small, e.g. 0.1 prefer higher order functions blow up σstat  



Summary of Discrete Profile Likelihood method  

44 

 Method shows good coverage in toy experiments  perform toy 
experiments for your specific analyses 

 Choices (open questions): 
 function models to include? 
 c term 

 Method has been used e.g. 
    in CMS H  γγ analysis 

 

EPJ. C74 (2014) 3076  



Summary  
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Goodness-of-Fit tests for 

1 Checking data modelling 

2 Outlier rejection 

Likelihood ratios for Background  

3 Optimal parametrisation 

4 Shape systematics  
(discrete profiling) 

1 3 4 

2 

 Perform ≥ 2 tests, e.g.     and K.S.  

 χ2 tests powerful tool  

 stat+syst error in one go 

Stop kk+1 when:   
                                  & 
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Final riddle – part I 
Meggie has two children and  

the older one is a girl 
 What is the probability that the 

other child is also a girl? 
   

Martin Gardner, “the two-child 
problem,” Scientific American, 1959 
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Final riddle – part II 
From all families with two children, at 
least one of whom is a girl, a family is 

chosen at random  What is the 
probability that both children are girls? 
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Backup slides 



Statistical Data Analysis – typical tasks  

49 

1. Optimal  
S/B separation  

2. Signal searches,  
fits of all kind of interesting 
physics parameters to data 

and limits  

3. Unfolding 
differential σ 

4. Systematic uncertainties 

5. Data combination  

Response 
matrix K 
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