technische universität dortmund

An introduction to Bayesian Reasoning and its applications

Kevin Kröninger - TU Dortmund

Terascale Statistics School 2018
DESY Hamburg
23.02.2018

Overview

- A concrete example
- Scientific reasoning
-Probability and the Bayesian interpretation
- Parameter estimation
- A concrete example (continued)
- Model comparison
- Numerical method: MCMC
- Further examples
- Summary
technische universität dortmund

A concrete example

Neutrinoless double beta-decay
Rare nuclear transition (2 ${ }^{\text {nd }}$ order weak process):

A concrete example

Neutrinoless double beta-decay

Searching for a single peak on top of a (flat) background...

technische universität dortmund

Example: Hd-Moscow

GERDA-Experiment

 dortmund

Example: GERDA

Neutrinoless double beta-decay

Major subjects of data analysis

- Model comparison: Which model describes the data best?
-SM background only?
- Does Onubb + background describe the data better?
- Parameter estimation: Given a model, what are the values of its free parameters?
-What is the rate of Onubb?
-What is the actual background level?
- Goodness-of-fit: Given a model, is it consistent with the data?
- Does the background-only hypothesis describe the data reasonably well?
technische universität dortmund

Scientific reasoning

Ingredients

Deductive reasoning

- Used when making predictions from a model
- Application in data analysis:
- Premise P (model with parameters) \rightarrow Conclusion Q (observables)
- Premise Q (observables) \rightarrow Conclusion R (set of observations)
- Thus: Premise P (model) \rightarrow Conclusion R (set of observations)
- Given a model, the outcome is specified
- No need to argue, it's math!
- Example: Onubb + background model predicts a certain energy spectrum

Inductive reasoning

- Used when choosing a model
- Application in data analysis:
- Premise P (model with parameters) \rightarrow Conclusion R (set of observations)
- Observe R, what does it say about P? Not much since it could have been $P_{1} \rightarrow R, P_{2} \rightarrow R, P_{3} \rightarrow R, \ldots$
- Validity of model P?
- If we know all models, and only P results in R, then we know that P is true.
- Otherwise, can not verify the model.
- Can try to falsify the model: if we observe something that contradicts the model, it can not be true
-Can we know which model is true? No!
- Plato: knowledge is justified true belief.
- Proposition P is known to be true if and only if
- P is true.
- P is believed to be true.
- It is justified that P is believed to be true.
- But: we can not know the truth, so:

Knowledge is justified belief

- This discussion is known as the Gettier problem
- Justification comes from experimental observations:
- Derive predictions from model and test them
- The more tests are passed, the greater the belief in the model

Examples: SM of particle physics, general relativity, ...

Standard Model Total Production Cross Section Measurements
Status: July 2017

"No, can't be..."

Is the SM wrong?

2015

"Could be, but wasn't confirmed"
> 2016/17

"Mh, really?"

Application in science

- How do we gain knowledge?
- Set up models and specify their parameters (check arXiv.org!)
- Derive (deductively) predictions from the models
- Can not know all models, so can not verify a model
- Good model: falsifiable, make predictions which can be proven wrong (Z' vs. SUSY vs. string theory)
- Use data to gain knowledge about the models and parameters

Examples:

- Special relativity predicts time dilation. Atmospheric muons can thus be observed on the earth's surface.
- Neutrino postulation: Pauli was hesitant to publish his neutrino idea because he thought it would be difficult to discover.

Can we quantify the knowledge about a model? Yes, use probabilities

Axioms and interpretation

- Kolmogorov axioms: start from set S

1. For each subset A, assign probability $P(A)$ between 0 and 1
2. Probability $P(S)=1$
3. For disjunct subsets A and B :

$$
P(A \text { or } B)=P(A)+P(B)
$$

Nice mathematical formulation, but meaningless!

- Law of total probability:

$$
P(B)=\sum P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)
$$

$P(A) \geq 0, \ldots$
$A \cap B=\varnothing, \ldots$
$S=A \cup B \cup C \cup D$
$P(S)=P(A)+P(B)+P(C)+P(D)=1$

$$
\begin{aligned}
& P(A) \geq 0, \ldots \\
& P(B)=\sum P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right) \\
&=P\left(B \mid A_{1}\right) \cdot P\left(A_{1}\right)+P\left(B \mid A_{2}\right) \cdot P\left(A_{2}\right) \\
&+P\left(B \mid A_{3}\right) \cdot P\left(A_{3}\right)+P\left(B \mid A_{4}\right) \cdot P\left(A_{4}\right) \\
&+P\left(B \mid A_{5}\right) \cdot P\left(A_{5}\right) \\
&=0
\end{aligned}
$$

- Kolmogorov axioms: start from set S

1. For each subset A, assign probability $P(A)$ between 0 and 1
2. Probability $P(S)=1$
3. For disjunct subsets A and $B: P(A$ or $B)=P(A)+P(B)$

- Nice mathematical formulation, but meaningless!

Bayesian interpretation

- Subsets correspond to hypotheses, i.e. a model with a particular value of the parameter. Example: SM and the electron mass
- Probability is understood as degree-of-belief (or state-of-knowledge) for this hypothesis to be true
- Interpretation fully consistent with Kolmogorov axioms

Bayes' Theorem

$$
\begin{aligned}
& P(A \mid B) \cdot P(B)=P(A \wedge B)=P(B \mid A) \cdot P(A) \\
\Leftrightarrow & P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)} \\
\Leftrightarrow & P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{\Sigma} \frac{P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)}{}
\end{aligned}
$$

$$
\begin{aligned}
& P(A \mid B) \cdot P(B)=P(A \wedge B)=P(B \mid A) \cdot P(A) \\
\Leftrightarrow & P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)} \\
\Leftrightarrow & P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{\sum P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)} \\
\text { - Here: } \quad & P(\text { theory } \mid \text { data }) \propto P(\text { data } \mid \text { theory }) \cdot P(\text { theory })
\end{aligned}
$$

- P (theory | data):
posterior probability (induction)
- P (data | theory):
- P(theory):
probability of the data, likelihood (deduction)
prior probability
- In words: "My degree-of-belief of a model is $x \%$ ", or
"The parameter values lie in an interval [a,b] with $x \%$ probability"
technische universität dortmund

A simple example

Particles in a TRT

- Particle identification based on transition radiation
- Distinguish between electrons and charged pions
-What does a "signal" mean?

[ATLAS-CONF-2011-128]

A simple example

Particles in a TRT

- Assume test beam measurement
-Test beam composition:
- Detection efficiencies:
- $p($ electron $)=90 \%$
$-p($ pion $)=10 \%$
- $p($ signal | electron) $=95 \%$
-p(signal|pion) = 6\%

Your turn! What is p (electron | signal)?

Use Bayes' Theorem: $\quad P\left(A_{j} \mid B\right)=\frac{P\left(B \mid A_{j}\right) \cdot P\left(A_{j}\right)}{\sum P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)}$
What are A_{1} and A_{2} and B ?

A simple example

Particles in a TRT

- Assume test beam measurement
-Test beam composition:
- $p($ electron $)=90 \%$
- $p($ pion $)=10 \%$
- Detection efficiencies:
- $p($ signal | electron) $=95 \%$
$\cdot p($ signal |pion) $=6 \%$

$$
\begin{aligned}
& p(e \mid \text { Signal })=\frac{p(\text { Signal } \mid e) \cdot p(e)}{p(\text { Signal } \mid e) \cdot p(e)+p(\text { Signal } \mid \pi) \cdot p(\pi)} \\
& p(\pi \mid \text { No signal })=\frac{p(\text { No signal } \mid \pi) \cdot p(\pi)}{p(\text { Nosignal|e }) \cdot p(e)+p(\text { No signal } \mid \pi) \cdot p(\pi)}
\end{aligned}
$$

A simple example

Particles in a TRT

-Probabilities:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{e} \mid \text { Signal })=\frac{0.95 \cdot 0.9}{0.95 \cdot 0.9+0.06 \cdot 0.10}=0.993 \\
& \mathrm{p}(\pi \mid \text { Signal })=\frac{0.06 \cdot 0.10}{0.95 \cdot 0.9+0.06 \cdot 0.10}=0.007 \\
& \mathrm{p}(\mathrm{e} \mid \text { No signal })=\frac{0.05 \cdot 0.90}{0.05 \cdot 0.90+0.94 \cdot 0.10}=0.312 \\
& \mathrm{p}(\pi \mid \text { No Signal })=\frac{0.94 \cdot 0.10}{0.05 \cdot 0.90+0.94 \cdot 0.10}=0.676
\end{aligned}
$$

"A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule"

Stephen Senn, Statistician \& Bayesian Skeptic (mostly)

Where does prior knowledge come from?

- Prior can come from
- personal degree-of-belief (gut feeling),
- theoretical considerations (how badly do you want SUSY to be true?),
- auxiliary measurements, ...
- ... good arguments ... (in the best case)
- Elegant update of knowledge: posterior of one experiment can be prior of another experiment. Natural way to combine measurements.

$$
\begin{array}{ll}
& P(\text { Model | Data 1) } \sim P(\text { Data 1 } \mid \text { Model }) \times P(\text { Model }) \\
\text { and } & P\left(\text { Model | Data 2) } \sim P(\text { Data 2 | Model }) \times P^{\prime}(\text { Model })\right. \\
\text { with } & P^{\prime}=P(\text { Model | Data 1 })=P(\text { Data } 1 \mid \text { Model }) \times P(\text { Model }) \\
\rightarrow & P(\text { Model | Data 2) } \sim P(\text { Data 2 } \mid \text { Model }) \times P(\text { Data } 1 \mid \text { Model }) \times P(\text { Model }) \\
& =P(\text { Model | Data 1 + Data 2 })
\end{array}
$$

Criticism

- Priors are subjective
- Yes, but it is made explicit
- Objective Bayesian movement, try to find objective priors
- reference priors minimize the "information"
- Prior depends on parametrization (lifetime τ vs. decay constant $\lambda=1 / \tau$)
- Jeffreys prior invariant under reparameterization

Remarks

- Choice of (initial) prior should not play a strong role.
- Difficult to formulate a single prior for a collaboration of ~ 3.000 people
- Practical solution: subjunctive priors. Requote your result under different prior assumptions ("the optimist", "the pessimist", "the ignorant", ...)
-Write down your prior!

Two different priors

Model: Gaussian with (unknown) mean value between 0 and 1 (truth: 0.75), and width of 0.1
Start with two different priors (optimistic / pessimistic). \rightarrow Slightly different posteriors after one event.

Two different priors

Model: Gaussian with (unknown) mean value between 0 and 1 (truth: 0.75), and width of 0.1
\rightarrow About the same posterior after 100 events

Parameter estimation

- Full solution: posterior probability
(nothing more than that, but difficult to write down in a paper)
- For papers/talks: summarize posterior using point and interval estimates
- Common point estimators:
- Maximum posterior probability (global mode)
- Maximum of marginalized probability (local mode)
- Mean value of marginalized probability
- Median of marginalized probability:

$$
p\left(\lambda_{i} \mid D\right)=\int \prod_{i \neq j} d \lambda_{j} p(\vec{\lambda} \mid D)
$$

- Common interval estimates:
- Smallest (set of) interval(s) covering 68\% probability
-(Central interval) 16\% - 84\% quantile
- Standard deviation of marginalized posterior (a la Gauß)
-Upper (lower) limits: 99\%, 95\%, 90% (1\%, 5\%, 10\%) quantiles
-Practical suggesstion:
Choose such that point estimator lies inside the estimated interval!

Mean	\leftrightarrow	Standard deviation
Mode	\leftrightarrow	Smallest interval
Median	\leftrightarrow	Central interval

A 1-dim Gaussian

technische universität dortmund

Example: Poisson

Practical hint:

1 -sigma region is not the smallest region covering 68\% (for 2-D problems)
(it's 39.3\% instead)

Situation even worse in two dimensions
\rightarrow Do not use summary values!

- Data:
- Binned, number of events
- Shapes:
- Background linearly decreasing
- Signal: Gaussian at fixed position
- Statistical model:
- Independent Poisson fluctuations

- Parameter 1: background strength, Gaussian prior
-Parameter 2: signal strength, exponentially decreasing prior
- Fit procedure
-Template fit: scale signal and background shapes until sum of templates matches data

Nuisance parameters

- Model $=$ Physics model (+ par.) \times Detector model (+ nuisance par.)
- Associate nuisance parameters to sources of systematic uncertainties, e.g.
- Collider: Luminosity uncertainty (1 parameter)
- Calorimeter: jet energy resolution (typically 3 parameters)
-Reconstructed objects: reconstruction efficiency (n parameters)
- Different physics models?
-...
- Is it justified to use a nuisance parameter? Discrete vs. continuous par.
- Choose appropriate prior (typically Gaussian, sometimes flat)
- Marginalize w.r.t. all nuisance parameters
- Remove nuisance parameter from the final answer
- Combine systematic and statistical uncertainties

Systematic uncertainties

- Add two uncertainties:
- Systematic 1: 10\% uncertainty on signal and background yield
- Systematic 2: 60\% uncertainty on signal yield
- Priors:
- Gaussian with mean value of 0 and width of 1 sigma

Constrained by background

Medium impact on signal

Not constrained by background

Large impact on signal

Comparing different models

- Assume you have a full set of models which all describe the data D
- Start with the naïve Bayes ansatz:
- Assign a probability to all models $M_{i}: 0 \leq P\left(M_{i}\right) \leq 1$
- If you have all models, then the sum of probabilities is $1: \sum P\left(M_{i}\right)=1$
- Next, use Bayes' theorem to calculate the probability for each model:
$P\left(M_{i} \mid D\right)=P\left(D \mid M_{i}\right) \cdot P\left(M_{i}\right) / P(D)$,
where $P(D)=\sum P\left(D \mid M_{i}\right) \cdot P\left(M_{i}\right)$
- If the model has free parameters λ, then integrate them out
$P\left(M_{i} \mid D\right)=\int p\left(M_{i}, \lambda \mid D\right) d \lambda$

Comparing different models

- Naïve Bayes ansatz (continues):
-The last term can be calculated as

$$
p\left(M_{i}, \lambda \mid D\right)=p\left(D \mid M_{i}, \lambda\right) \cdot P\left(M_{i}, \lambda\right) / \sum \int p\left(D \mid M_{i}, \lambda\right) \cdot P\left(M_{i}, \lambda\right) d \lambda
$$

- Note that there is no distinction between a model and a model with parameters (composite hypothesis)
- Example: A. Caldwell and K. Kröninger, "Signal discovery in sparse spectra: A Bayesian analysis", Phys. Rev. D 74 (2006) 092003

Comparing different models

- Bayes factors:
- Assume posterior probabilites for two models M_{1} and M_{2} :

$$
p\left(M_{i} \mid D\right)=p\left(D \mid M_{i}\right) \cdot P\left(M_{i}\right) /\left(p\left(D \mid M_{1}\right) \cdot P\left(M_{1}\right)+p\left(D \mid M_{2}\right) \cdot P\left(M_{2}\right)\right)
$$

- Calculate the posterior odds:
$p\left(M_{1} \mid D\right) / p\left(M_{2} \mid D\right)=p\left(D \mid M_{1}\right) \cdot P\left(M_{1}\right) / p\left(D \mid M_{2}\right) \cdot P\left(M_{2}\right)$
- The ratio
$B_{12}=p\left(D \mid M_{1}\right) / p\left(D \mid M_{2}\right)$
is referred to as Bayes factor.
- Bayes factors (continued):
- So we find
"posterior odds" = "Bayes factor" times "prior odds"
- Traditionally, for a null hypothesis H_{0} and an alternative hypothesis H_{1}, the ratio B_{10} gives evidence against the null hypothesis. Large values of B_{10} are an indication that the hypothesis H_{0} is wrong in favour of H_{1}
- Bayes factors do not rely on the priors.
- If the models do not have any free parameters, then the Bayes factors are likelihood ratios. Otherwise, the parameters have to be integrated out.

Comparing different models

- Bayes factors (continued):
- Rough scales:

$$
B_{12}=p\left(D \mid M_{1}\right) / p\left(D \mid M_{2}\right)
$$

B_{10}	Evidence against H_{0}
<1	none
$1-3.2$	Not worth mentioning
$3.2-10$	substantial
$10-100$	strong
>100	decisive

- Of course, somebody just made that up. Depends on application.

Occam's razor

- Principle that an explaination should not be unnecessarily complicated, i.e. chose the simpler models of the two if both describe the data reasonably well.
- Intuitively clear, although the more complex model could still be true.
- Bayesian reasoning includes Occam's razor: the prior probabilities for complex models are typically smaller than for complex ones, and thus are the posterior probabilities.
- Assume a simple model M_{1} and a complex one M_{2} with constant priors for their parameters
$p\left(\lambda_{i}\right)=1 / c_{i}\left(c_{i}>1\right)$,
and equal prior probabilities for the models themselves, i.e.

$$
p\left(M_{1}\right)=p\left(M_{2}\right)=0.5 .
$$

- Then we find

$$
\begin{aligned}
p\left(\vec{\lambda}, M_{1} \mid \vec{D}\right) & =\frac{p\left(\vec{D} \mid \vec{\lambda}, M_{1}\right) \cdot p\left(\vec{\lambda}, M_{1}\right)}{\int \mathrm{d} \vec{\lambda} p\left(\vec{D} \mid \vec{\lambda}, M_{1}\right) \cdot p\left(\vec{\lambda}, M_{1}\right)+\int \mathrm{d} \vec{\lambda} p\left(\vec{D} \mid \vec{\lambda}, M_{2}\right) \cdot p\left(\vec{\lambda}, M_{2}\right)} \\
& =\frac{p\left(\vec{D} \mid \vec{\lambda}, M_{1}\right) \cdot 0.5 \cdot \prod_{i=1}^{N_{1}} 1 / c_{i}}{\int \mathrm{~d} \vec{\lambda} p\left(\vec{D} \mid \vec{\lambda}, M_{1}\right) \cdot 0.5 \cdot \prod_{i=1}^{N_{1}} 1 / c_{i}+\int \mathrm{d} \vec{\lambda} p\left(\vec{D} \mid \vec{\lambda}, M_{2}\right) \cdot 0.5 \cdot \prod_{i=1}^{N_{2}} 1 / c_{i}}
\end{aligned}
$$

- So the posterior probability for M_{1} will increase, the more parameters we add.

Numerical issues

- Point estimate:
- Maximization of posterior
- Typical tool: Minuit
- Also: Simulated annealing
- Calculation of marginal distributions:
- Analytical solutions usually difficult
- Numerical integration methods, e.g. VEGAS
- Sampling methods:
- Hit\&miss, simple Monte Carlo, ...
- Importance sampling
- Markov Chain Monte Carlo (MCMC)
- Revolution of Bayesian computation

How does MCMC work?

- Output of Bayesian analyses are posterior probability densities, i.e., functions of an arbitrary number of parameters (dimensions).
- Sampling large dimensional functions is difficult.
- Idea: use random walk heading towards region of larger values (probabilities)
- Metropolis algorithm
N. Metropolis et al.,
J. Chem. Phys. 21 (1953) 1087.

- Start at some randomly chosen x_{i}
- Randomly generate y around x_{i}
- If $\mathrm{f}(y)>\mathrm{f}\left(x_{i}\right)$ set $x_{i+1}=y$
- If $\mathrm{f}(y)<\mathrm{f}\left(x_{i}\right)$ set $x_{i+1}=y$ with prob. $\mathrm{p}=\mathrm{f}(\mathrm{y}) / \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$
- If y is not accepted set $x_{i+1}=x_{i}$
- Start over

MCMC for Bayesian inference

- Use MCMC to sample the posterior probability, i.e.

$$
f(\vec{\lambda})=p(\vec{D} \mid \vec{\lambda}) p_{0}(\vec{\lambda})
$$

- Marginalization of posterior:

$$
p\left(\lambda_{i} \mid \vec{D}\right)=\int p(\vec{D} \mid \vec{\lambda}) p_{0}(\vec{\lambda}) d \vec{\lambda}_{j \neq i}
$$

- Fill a histogram with just one coordinate while sampling
- Error propagation: calculate any function of the parameters while sampling
- Point estimate: find mode while sampling

Does it work?

- Test MCMC on a function:

$$
f(x)=x^{4} \sin \left(x^{2}\right)
$$

- Compare MCMC distribution to analytic function
- Several minima/maxima are no problem.
- Different orders of magnitude are no problem.
- But: need to make sure that these chains converge towards the true distribution

Convergence

- This is where it get's difficult...
- Add a burn-in phase

Convergence a la Gelman \& Rubin

- Use multiple chains

Parameter 0 value vs. iteration

Parameter 1 vs parameter 0

Bayesian Analysis Toolkit

- Tool for Bayesian inference written in C++
- Based on the ROOT-core functionality, interface to RooStats
- Uses MCMC for the calculation of the posterior probability
- Full control over convergence, automatic adjustment of step size
- Further algorithms: interface to CUBA, Minuit; importance sampling, simulated annealing, ...
-Pre-defined models: histogram fitter, template fitter, tool for combination of measurements, ...
-Web page: http://www.mppmu.mpg.de/bat/
- Contact: bat@mppmu.mpg.de
- Paper on BAT:
A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit
Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552].

https://github.com/bat/bat

HEP examples

Dilepton resonances
ATLAS-CONF-2012-129

Classical template fit

A complex example

Rare b-meson decays

Frederic Beaujean et al.
JHEP 08(2012)030

- Tree-level FCNC forbidden in the SM
-Effective field theory: add eff. operators to Lagrangian
- Similar to Fermi's four-point interaction
- Physics case: search for non-SM contributions
- Model parameters:
- 3 Wilson coefficients
- 25 nuisance parameters

- Input:
- 59 measurements from BaBar, Belle, CDF, LHCb
- Theory calculations, quark masses, CKM parameters, ...
- Numerically difficult ~ impossible with MCMC

A complex example

Rare b-meson decays

Frederic Beaujean et al. JHEP 08(2012)030

- Use MCMC plus population MC

	Pro	Con
MCMC	local exploration, learns on the fly	trapped in local maxima
PMC	massive parallelization, yields normalization, multipl mory sensitive	very initialization to

- Dominant contribution: $B R(B \rightarrow K l l) \propto\left|C_{9}{ }^{2}\right|+\left|C_{10}{ }^{2}\right|$

Initial proposal from chains

Final proposal, 10 PMC updates

Smoothed posterior

A complex example

Rare b-meson decays

- Posterior probability well sampled
- No hint for new physics
- Showed necessity to implement new numerical algorithms
- Example:

Wilson coefficients
2σ contours of $P\left(\mathcal{C}_{i} \mathcal{C}_{k} \mid D\right)$ using $B \rightarrow K^{*} \gamma$ with
(1) $B \rightarrow K \bar{\ell} \ell$
(2) $B \rightarrow K^{*} \bar{\ell}$, low q^{2}.
(3) $B \rightarrow K^{*} \bar{\ell}$, high q^{2}.
(4) all data: $\square 1 \sigma \square 2 \sigma$

5 Standard Model:
symmetry: observable $X \sim \mathcal{C}_{i} \mathcal{C}_{k}$ $\Rightarrow P\left(\mathcal{C}_{i}<0 \mid D\right) \approx P\left(\mathcal{C}_{i}>0 \mid D\right)$

Summary

- Knowledge is justified belief
- Bayesian probability is degree-of-belief
- Bayes' theorem allows easy update of knowledge
- Everything else is about math and numerical methods:
- Parameter (point and interval) estimation
- Treatment of systematic uncertainties
- Calculation of marginalized distributions
- Also: model comparison and goodness-of-fit (not covered)
- Numerical methods necessary for complex fit with a large number of parameters

