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Overview

Overview
● A concrete example
● Scientific reasoning
● Probability and the Bayesian interpretation
● Parameter estimation
● A concrete example (continued)
● Model comparison
● Numerical method: MCMC
● Further examples
● Summary
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A concrete example
Neutrinoless double beta-decay

W W

Uei Uei

νi νi

e- e-

(Z, A) (Z + 2, A)

Process violates lepton 
number conservation

2νββ: (Z, A) → (Z+2, A) + 2 e- + 2 ν ΔL = 0  (T1/2 ~ 1021 y) 

0νββ: (Z, A) → (Z+2, A) + 2 e- ΔL = 2  (T1/2 > 1025 y)

Rare nuclear transition (2nd order weak process):

Majorana
neutrino

NUCLEAR PROCESSNUCLEAR PROCESS
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A concrete example
Neutrinoless double beta-decay

Searching for a single peak on top of a (flat) background...

Signal
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Example: Hd-Moscow
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Example: GERDA
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Example: GERDA
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The principle
Neutrinoless double beta-decay

Do you see a line?
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Typical questions
Major subjects of data analysis
● Model comparison: Which model describes the data best?

● SM background only?
● Does 0nubb + background describe the data better?

● Parameter estimation: Given a model, what are the values of its free
parameters?
● What is the rate of 0nubb?
● What is the actual background level?

● Goodness-of-fit: Given a model, is it consistent with the data?
● Does the background-only hypothesis describe the data reasonably well?



Kevin Kröninger   -   Terascale Statistics School 2018    10

Scientific reasoning
Ingredients
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Scientific reasoning
Deductive reasoning
● Used when making predictions from a model
● Application in data analysis:

● Premise P (model with parameters) → Conclusion Q (observables)
● Premise Q (observables) → Conclusion R (set of observations)
● Thus: Premise P (model) → Conclusion R (set of observations)

● Given a model, the outcome is specified
● No need to argue, it’s math!
● Example: 0nubb + background model predicts a certain energy spectrum
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Scientific reasoning
Inductive reasoning
● Used when choosing a model
● Application in data analysis:

● Premise P (model with parameters) → Conclusion R (set of observations)
● Observe R, what does it say about P? Not much since it could have been
P

1
→R, P

2
→R, P

3
→R, ...

● Validity of model P?
● If we know all models, and only P results in R, then we know that P is true.
● Otherwise, can not verify the model.
● Can try to falsify the model: if we observe something that contradicts the
model, it can not be true

● Can we know which model is true? No!
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Scientific reasoning
Truth and knowledge
● Plato: knowledge is justified true belief. 
● Proposition P is known to be true if and only if

● P is true.
● P is believed to be true.
● It is justified that P is believed to be true.

● But: we can not know the truth, so:
  

Knowledge is justified belief
● This discussion is known as the Gettier problem

 

● Justification comes from experimental observations:
●  Derive predictions from model and test them
● The more tests are passed, the greater the belief in the model

Examples: SM of particle physics, general relativity, ...
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SM vs. “tensions”
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Is the SM wrong?

SM vs. “tensions”

2011 2015 > 2016/17

“No, can't be...” “Could be, but wasn't confirmed” “Mh, really?”
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Scientific reasoning
Application in science
● How do we gain knowledge?

● Set up models and specify their parameters (check arXiv.org!)
● Derive (deductively) predictions from the models
● Can not know all models, so can not verify a model
● Good model: falsifiable, make predictions which can be proven wrong
(Z' vs. SUSY vs. string theory)

● Use data to gain knowledge about the models and parameters

Examples:
● Special relativity predicts time dilation. Atmospheric muons can thus be
observed on the earth’s surface.

● Neutrino postulation: Pauli was hesitant to publish his neutrino idea
because he thought it would be difficult to discover.

 

Can we quantify the knowledge about a model? Yes, use probabilities
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Probability
Axioms and interpretation
● Kolmogorov axioms: start from set S

1. For each subset A, assign probability P(A) between 0 and 1

2. Probability P(S) = 1

3. For disjunct subsets A and B:
 

P(A or B) = P(A) + P(B)

Nice mathematical formulation, but meaningless!

● Law of total probability:

      P(B) = ∑ P(B|A
i
)∙P(A

i
)
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Probability

P(A) ≥ 0, ...

A ∩ B = Ø, ...

S = A  B  C  D

P(S) = P(A) + P(B) + P(C) + P(D) = 1

S

P(A) ≥ 0, ...

P(B) = ∑ P(B|A
i
)∙P(A

i
)

= P(B|A
1
)∙P(A

1
) + P(B|A

2
)∙P(A

2
)

+ P(B|A
3
)∙P(A

3
) + P(B|A

4
)∙P(A

4
)

+ P(B|A
5
)∙P(A

5
)

S

A

C

B

D

B

A
1

A
2

A
5

A
3

A
4

= 0
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Probability
Axioms and interpretation
● Kolmogorov axioms: start from set S

1. For each subset A, assign probability P(A) between 0 and 1

2. Probability P(S) = 1

3. For disjunct subsets A and B: P(A or B) = P(A) + P(B)
● Nice mathematical formulation, but meaningless!

Bayesian interpretation
● Subsets correspond to hypotheses, i.e. a model with a particular value
of the parameter. Example: SM and the electron mass

● Probability is understood as degree-of-belief (or state-of-knowledge) for
this hypothesis to be true

● Interpretation fully consistent with Kolmogorov axioms
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Bayes' Theorem
Bayes' Theorem

Σ

A

B

S

AB



Kevin Kröninger   -   Terascale Statistics School 2018    21

Bayes' Theorem
Bayes' Theorem

 

● Here:

● P(theory | data): posterior probability (induction)
● P(data | theory): probability of the data, likelihood (deduction)
● P(theory): prior probability
● In words: “My degree-of-belief of a model is x%”, or

“The parameter values lie in an interval [a,b] with x% probability”

Σ
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A simple example
Particles in a TRT
● Particle identification based on
transition radiation

● Distinguish between electrons
and charged pions

● What does a “signal” mean?

[ATLAS-CONF-2011-128]
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A simple example
Particles in a TRT
● Assume test beam measurement
● Test beam composition:

● p(electron) = 90%
● p(pion)       = 10%

Your turn! What is p(electron | signal)?

Use Bayes' Theorem:

What are A
1
 and A

2
 and B?

 

● Detection efficiencies:

● p(signal | electron) = 95%
● p(signal | pion)       =   6%

j
j j

Σ
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A simple example
Particles in a TRT
● Assume test beam measurement
● Test beam composition:

● p(electron) = 90%
● p(pion)       = 10%

 

● Detection efficiencies:

● p(signal | electron) = 95%
● p(signal | pion)       =   6%

pe∣Signal=
pSignal∣e⋅pe

pSignal∣e⋅pepSignal∣⋅p

p∣Nosignal=
p No signal∣⋅p

pNosignal∣e⋅pepNo signal∣⋅p



Kevin Kröninger   -   Terascale Statistics School 2018    25

A simple example
Particles in a TRT
● Probabilities:

pe∣Signal=
0.95⋅0.9

0.95⋅0.90.06⋅0.10
=0.993

p∣Signal=
0.06⋅0.10

0.95⋅0.90.06⋅0.10
=0.007

pe∣No signal=
0.05⋅0.90

0.05⋅0.900.94⋅0.10
=0.312

p∣NoSignal=
0.94⋅0.10

0.05⋅0.900.94⋅0.10
=0.676
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A bit of bashing

“A Bayesian is one who, vaguely expecting a horse, and 
catching a glimpse of a donkey, strongly believes he has 
seen a mule”

Stephen Senn, Statistician & Bayesian Skeptic (mostly)
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Priors
Where does prior knowledge come from?
● Prior can come from

● personal degree-of-belief (gut feeling), 
● theoretical considerations (how badly do you want SUSY to be true?), 
● auxiliary measurements, …
● … good arguments … (in the best case)

● Elegant update of knowledge: posterior of one experiment can be prior of
another experiment. Natural way to combine measurements.

P(Model | Data 1) ~ P(Data 1 | Model) x P(Model)

and P(Model | Data 2) ~ P(Data 2 | Model) x P'(Model)

with P' = P(Model | Data 1) = P(Data 1 | Model) x P(Model)

 P(Model | Data 2) ~ P(Data 2 | Model) x P(Data 1 | Model) x P(Model)

= P(Model | Data 1 + Data 2)
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Priors
Criticism
● Priors are subjective

● Yes, but it is made explicit
● Objective Bayesian movement, try to find objective priors
● reference priors minimize the “information”

● Prior depends on parametrization (lifetime τ vs. decay constant λ=1/τ)
● Jeffreys prior invariant under reparameterization

 

Remarks
● Choice of (initial) prior should not play a strong role.
● Difficult to formulate a single prior for a collaboration of ~3.000 people
● Practical solution: subjunctive priors. Requote your result under different 
prior assumptions (“the optimist”, “the pessimist”, “the ignorant”, ...)

● Write down your prior!
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Two different priors

Model: Gaussian with (unknown) mean value between 0 and 1 (truth: 0.75),
and width of 0.1

Start with two different priors (optimistic / pessimistic).
→ Slightly different posteriors after one event.

Impact of priors
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Two different priors

Model: Gaussian with (unknown) mean value between 0 and 1 (truth: 0.75),
and width of 0.1

→ About the same posterior after 100 events

Impact of priors
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Parameter estimation
Parameter estimation
● Full solution: posterior probability
(nothing more than that, but difficult to write down in a paper)

● For papers/talks: summarize posterior using point and interval estimates

● Common point estimators:
● Maximum posterior probability (global mode)
● Maximum of marginalized probability (local mode)
● Mean value of marginalized probability
● Median of marginalized probability:

p i∣D =∫∏i≠ j
d  j p ∣D 
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Parameter estimation
Parameter estimation
● Common interval estimates:

● Smallest (set of) interval(s) covering 68% probability
● (Central interval) 16% - 84% quantile
● Standard deviation of marginalized posterior (a la Gauß)
● Upper (lower) limits: 99%, 95%, 90% (1%, 5%, 10%) quantiles

● Practical suggesstion: 
Choose such that point estimator lies inside the estimated interval!

Mean  ↔ Standard deviation

Mode ↔ Smallest interval

Median ↔ Central interval



Kevin Kröninger   -   Terascale Statistics School 2018    33

Parameter estimation

10%
Quantile

25% Quantile

50% Quantile
(Median)

75% 
Quantile

90%
   Quantile

Mode

Arithmetic
mean



Kevin Kröninger   -   Terascale Statistics School 2018    34

A 1-dim Gaussian
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A bimodal distribution
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n
obs

 = 7

Mean: 7.986 
Mode: 7.000
Median: 7.665

STD 2.805
Central 68% interval:

5.24 – 10.88
Smallest 68% interval:

4.6 - 10.2

Example: Poisson 
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A 2-dim Gaussian

Practical hint:
1-sigma region is not the 
smallest region covering 
68% (for 2-D problems)

(it's 39.3% instead)
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A 2D bimodal distribution
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Highly non-Gaussian

Median and mean in
unlikely region

Mode only consistent
with one (the most likely)
“solution”

Situation even worse 
in two dimensions

→ Do not use summary
     values!
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A (more complex) example
Concrete model
● Data:

● Binned, number of events
● Shapes:

● Background linearly decreasing
● Signal: Gaussian at fixed position

● Statistical model:
● Independent Poisson fluctuations
● Parameter 1: background strength, Gaussian prior
● Parameter 2: signal strength, exponentially decreasing prior

● Fit procedure
● Template fit: scale  signal and background shapes until sum of templates
matches data
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Estimation (2D)
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Estimation (1D)
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Update of knowledge
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Fitted spectrum

d
N

/d
E

E [keV]
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Syst. uncertainties
Nuisance parameters
● Model = Physics model (+ par.) ⨯ Detector model (+ nuisance par.)
● Associate nuisance parameters to sources of systematic uncertainties, e.g.

● Collider: Luminosity uncertainty (1 parameter)
● Calorimeter: jet energy resolution (typically 3 parameters)
● Reconstructed objects: reconstruction efficiency (n parameters)
● Different physics models ?
● ...

● Is it justified to use a nuisance parameter? Discrete vs. continuous par.
● Choose appropriate prior (typically Gaussian, sometimes flat)
● Marginalize w.r.t. all nuisance parameters

● Remove nuisance parameter from the final answer
● Combine systematic and statistical uncertainties
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Syst. uncertainties
Systematic uncertainties
● Add two uncertainties:

● Systematic 1: 10% uncertainty on signal and background yield
● Systematic 2: 60% uncertainty on signal yield

● Priors:
● Gaussian with mean value of 0 and width of 1 sigma
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Systematic 1

Constrained by background Medium impact on signal
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Systematic 2

Not constrained by background Large impact on signal
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Model comparison
Comparing different models
● Assume you have a full set of models which all describe the data D
● Start with the naïve Bayes ansatz:

● Assign a probability to all models M
i
: 0  P(M

i
)  1

● If you have all models, then the sum of probabilities is 1:  P(M
i
) = 1 

● Next, use Bayes' theorem to calculate the probability for each model:

P(M
i
|D) = P(D|M

i
) · P(M

i
) / P(D) ,

where P(D) =  P(D|M
i
) · P(M

i
)

● If the model has free parameters λ, then integrate them out

P(M
i
|D) =  p(M

i
,λ|D) dλ
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Model comparison
Comparing different models
● Naïve Bayes ansatz (continues):

● The last term can be calculated as

p(M
i
,λ|D) = p(D|M

i
,λ)· P(M

i
,λ) /   p(D|M

i
,λ)· P(M

i
,λ) dλ

● Note that there is no distinction between a model and a model with 
parameters (composite hypothesis)

● Example: A. Caldwell and K. Kröninger, “Signal discovery in sparse
spectra: A Bayesian analysis”, Phys. Rev. D 74 (2006) 092003
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Model comparison
Comparing different models
● Bayes factors:

● Assume posterior probabilites for two models M
1
 and M

2
:

p(M
i
|D) = p(D|M

i
)· P(M

i
) / (p(D|M

1
)· P(M

1
) + p(D|M

2
)· P(M

2
))

● Calculate the posterior odds:

p(M
1
|D) / p(M

2
|D) = p(D|M

1
)· P(M

1
) / p(D|M

2
)· P(M

2
)

● The ratio

B
12

 = p(D|M
1
) / p(D|M

2
)

is referred to as Bayes factor.



Kevin Kröninger   -   Terascale Statistics School 2018    52

Model comparison
Comparing different models
● Bayes factors (continued):

● So we find

“posterior odds” = “Bayes factor” times “prior odds”

● Traditionally, for a null hypothesis H
0
 and an alternative hypothesis H

1
, 

the ratio B
10

 gives evidence against the null hypothesis. Large values of 

B
10

 are an indication that the hypothesis H
0
 is wrong in favour of H

1

● Bayes factors do not rely on the priors.
● If the models do not have any free parameters, then the Bayes factors 
are likelihood ratios. Otherwise, the parameters have to be integrated 
out.
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Model comparison
Comparing different models
● Bayes factors (continued):

● Rough scales:

● Of course, somebody just made that up. Depends on application.

B
10

Evidence against H
0

< 1 none

1 – 3.2 Not worth mentioning

3.2 - 10 substantial

10 - 100 strong

> 100 decisive

B
12

 = p(D|M
1
) / p(D|M

2
)
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Model comparison
Occam's razor
● Principle that an explaination should not be unnecessarily complicated, 
i.e. chose the simpler models of the two if both describe the data 
reasonably well.

● Intuitively clear, although the more complex model could still be true.
● Bayesian reasoning includes Occam's razor: the prior probabilities for 
complex models are typically smaller than for complex ones, and thus are 
the posterior probabilities.

● Assume a simple model M
1
 and a complex one M

2
 with constant priors for 

their parameters

p(λ
i
) = 1 / c

i
 (c

i
 > 1),

and equal prior probabilities for the models themselves, i.e.

p(M
1
 ) = p(M

2
) = 0.5.
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Model comparison
Occam's razor

● Then we find

● So the posterior probability for M
1
 will increase, the more parameters we 

add.
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Computational steps
Numerical issues
● Point estimate:

● Maximization of posterior
● Typical tool: Minuit
● Also: Simulated annealing

● Calculation of marginal distributions:
● Analytical solutions usually difficult
● Numerical integration methods, e.g. VEGAS
● Sampling methods:

● Hit&miss, simple Monte Carlo, ...
● Importance sampling
● Markov Chain Monte Carlo (MCMC)

● Revolution of Bayesian computation
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MCMC
How does MCMC work?
● Output of Bayesian analyses are 
posterior probability densities, i.e., 
functions of an arbitrary number of 
parameters (dimensions).

● Sampling large dimensional 
functions is difficult.

● Idea: use random walk heading 
towards region of  larger values 
(probabilities)

● Metropolis algorithm

N. Metropolis et al., 
J. Chem. Phys. 21 (1953) 1087.

● Start at some randomly chosen x
i

● Randomly generate y around x
i

● If f(y) > f(x
i
) set x

i+1
 = y

● If f(y) < f(x
i
) set x

i+1
 = y with prob. p=f(y)/f(x

i
)

● If y is not accepted set x
i+1

 = x
i

● Start over
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MCMC
MCMC for Bayesian inference
● Use MCMC to sample the 
posterior probability, i.e.

● Marginalization of posterior:

● Fill a histogram with just one
coordinate while sampling

● Error propagation: calculate any 
function of the parameters while
sampling

● Point estimate: find mode while
sampling

marginalized distributions
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MCMC
Does it work?
● Test MCMC on a function:

● Compare MCMC distribution to
analytic function

● Several minima/maxima are no
problem. 

● Different orders of magnitude are
no problem.

● But: need to make sure that these 
chains converge towards the true 
distribution

f x=x4sin x2
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MCMC
Convergence
● This is where it get’s difficult...
● Add a burn-in phase
● Use multiple chains

Parameter 0 value vs. iteration Parameter 1 vs parameter 0

Convergence a la Gelman & Rubin

Burn-in phase
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BAT
Bayesian Analysis Toolkit
● Tool for Bayesian inference written in C++
● Based on the ROOT-core functionality, interface to RooStats
● Uses MCMC for the calculation of the posterior probability
● Full control over convergence, automatic adjustment of step size
● Further algorithms: interface to CUBA, Minuit; importance sampling,
simulated annealing, ...

● Pre-defined models: histogram fitter, template fitter, tool for combination of
measurements, ...

● Web page: http://www.mppmu.mpg.de/bat/
● Contact: bat@mppmu.mpg.de
● Paper on BAT: 

A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian
Analysis Toolkit
Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552]. 

https://github.com/bat/bat

http://www.mppmu.mpg.de/bat/
mailto:bat@mppmu.mpg.de
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HEP examples
Dilepton resonances
ATLAS-CONF-2012-129



Kevin Kröninger   -   Terascale Statistics School 2018    63

HEP examples
Classical template fit
J.Phys. G40 (2013) 035110

Longitudinal structure 
function (48-dim. fit)
Phys.Lett. B682 
(2009) 8

Anomalous couplings
JHEP 1206 (2012) 
088
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A complex example
Rare b-meson decays
● Tree-level FCNC forbidden in the SM
● Effective field theory: add eff. operators to
Lagrangian

● Similar to Fermi’s four-point interaction
● Physics case: search for non-SM 
contributions

● Model parameters: 
● 3 Wilson coefficients
● 25 nuisance parameters

● Input:
● 59 measurements from BaBar, Belle, CDF, LHCb
● Theory calculations, quark masses, CKM parameters, ...

● Numerically difficult ~ impossible with MCMC

Frederic Beaujean et al.
JHEP 08(2012)030 
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A complex example
Rare b-meson decays
● Use MCMC plus population MC

● Dominant contribution: BR BKll∝∣C9
2∣∣C10

2∣

Frederic Beaujean et al.
JHEP 08(2012)030 
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A complex example
Rare b-meson decays
● Posterior probability
well sampled

● No hint for new physics
● Showed necessity to
implement new numerical
algorithms

● Example:
● F. Beaujean et al.,
Initializing adaptive
importance sampling
with Markov chains,
arXiv:1304.7808

Frederic Beaujean et al.
JHEP 08(2012)030 
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Summary
Summary
● Knowledge is justified belief
● Bayesian probability is degree-of-belief
● Bayes’ theorem allows easy update of knowledge
● Everything else is about math and numerical methods:

● Parameter (point and interval) estimation
● Treatment of systematic uncertainties
● Calculation of marginalized distributions
● Also: model comparison and goodness-of-fit (not covered)

● Numerical methods necessary for complex fit with a large number
of parameters
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