

An introduction to Bayesian Reasoning and its applications

Kevin Kröninger – TU Dortmund

Terascale Statistics School 2018 DESY Hamburg 23.02.2018

Overview

- A concrete example
- Scientific reasoning
- Probability and the Bayesian interpretation
- Parameter estimation
- A concrete example (continued)
- Model comparison
- Numerical method: MCMC
- Further examples
- Summary

A concrete example

Neutrinoless double beta-decay

Rare nuclear transition (2nd order weak process):

A concrete example

Neutrinoless double beta-decay

Searching for a single peak on top of a (flat) background...

Kevin Kröninger - Terascale Statistics School 2018

Example: GERDA

GERDA-Experiment

Example: GERDA

The principle

Neutrinoless double beta-decay

Typical questions

Major subjects of data analysis

- Model comparison: Which model describes the data best?
 - SM background only?
 - Does 0nubb + background describe the data better?
- Parameter estimation: Given a model, what are the values of its free parameters?
 - What is the rate of 0nubb?
 - What is the actual background level?
- Goodness-of-fit: Given a model, is it consistent with the data?
 - Does the background-only hypothesis describe the data reasonably well?

Ingredients

Deductive reasoning

- Used when making predictions from a model
- Application in data analysis:
 - Premise P (model with parameters) \rightarrow Conclusion Q (observables)
 - Premise Q (observables) → Conclusion R (set of observations)
 - Thus: Premise P (model) → Conclusion R (set of observations)
- Given a model, the outcome is specified
- No need to argue, it's math!
- *Example:* Onubb + background model predicts a certain energy spectrum

Inductive reasoning

- Used when choosing a model
- Application in data analysis:
 - Premise P (model with parameters) \rightarrow Conclusion R (set of observations)
 - Observe R, what does it say about P? Not much since it could have been P₁→R, P₂→R, P₃→R, …
- Validity of model P?
 - If we know all models, and only P results in R, then we know that P is true.
 - Otherwise, can *not verify* the model.
 - Can try to *falsify* the model: if we observe something that contradicts the model, it can not be true
- Can we know which model is true? No!

Truth and knowledge

- Plato: knowledge is justified true belief.
- Proposition P is known to be true if and only if
 - P is true.
 - P is believed to be true.
 - It is justified that P is believed to be true.
- But: we can not know the truth, so:

Knowledge is justified belief

- This discussion is known as the Gettier problem
- Justification comes from experimental observations:
 - Derive predictions from model and test them
 - The more tests are passed, the greater the belief in the model

Examples: SM of particle physics, general relativity, ...

SM vs. "tensions"

Status: July 2017

SM vs. "tensions"

Is the SM wrong?

Application in science

- How do we gain knowledge?
 - Set up models and specify their parameters (check arXiv.org!)
 - Derive (deductively) predictions from the models
 - Can not know all models, so can not verify a model
 - Good model: falsifiable, make predictions which can be proven wrong (Z' vs. SUSY vs. string theory)
 - Use data to gain knowledge about the models and parameters

Examples:

- Special relativity predicts time dilation. Atmospheric muons can thus be observed on the earth's surface.
- Neutrino postulation: Pauli was hesitant to publish his neutrino idea because he thought it would be difficult to discover.

Can we quantify the knowledge about a model? Yes, use probabilities

Probability

Axioms and interpretation

- Kolmogorov axioms: start from set S
 - 1. For each subset A, assign probability P(A) between 0 and 1
 - 2. Probability P(S) = 1
 - 3. For disjunct subsets A and B:

P(A or B) = P(A) + P(B)

Nice mathematical formulation, but *meaningless*!

• Law of total probability:

 $P(B) = \sum P(B|A_i) \cdot P(A_i)$

Probability

P(A) ≥ 0, ...

 $A \cap B = \emptyset, \dots$

 $S = A \cup B \cup C \cup D$

$$P(S) = P(A) + P(B) + P(C) + P(D) = 1$$

$$\begin{bmatrix} A_1 & A_2 & A_5 & S \\ & & \\ & & \\ & & \\ B & & \\ & & \\ A_3 & & & \\ & & & & \\ & & & \\ & & &$$

P(A) ≥ 0, ...

 $P(B) = \sum P(B|A_{i}) \cdot P(A_{i})$ $= P(B|A_{1}) \cdot P(A_{1}) + P(B|A_{2}) \cdot P(A_{2})$ $+ P(B|A_{3}) \cdot P(A_{3}) + P(B|A_{4}) \cdot P(A_{4})$

+
$$P(B|A_5) \cdot P(A_5)$$

Probability

Axioms and interpretation

- Kolmogorov axioms: start from set S
 - 1. For each subset A, assign probability P(A) between 0 and 1
 - 2. Probability P(S) = 1
 - 3. For disjunct subsets A and B: P(A or B) = P(A) + P(B)
- Nice mathematical formulation, but meaningless!

Bayesian interpretation

- Subsets correspond to hypotheses, i.e. a model with a particular value of the parameter. Example: SM and the electron mass
- Probability is understood as *degree-of-belief* (or *state-of-knowledge*) for this hypothesis to be true
- Interpretation fully consistent with Kolmogorov axioms

Bayes' Theorem

Bayes' Theorem

$$\begin{split} P(A|B) \cdot P(B) &= P(A \wedge B) = P(B|A) \cdot P(A) \\ \Leftrightarrow \ P(A|B) &= \frac{P(B|A) \cdot P(A)}{P(B)} \\ \Leftrightarrow \ P(A|B) &= \frac{P(B|A) \cdot P(A)}{\sum P(B|A_i) \cdot P(A_i)} \end{split}$$

Bayes' Theorem

$$\begin{aligned} P(A|B) \cdot P(B) &= P(A \land B) = P(B|A) \cdot P(A) \\ \Leftrightarrow \ P(A|B) &= \frac{P(B|A) \cdot P(A)}{P(B)} \\ \Leftrightarrow \ P(A|B) &= \frac{P(B|A) \cdot P(A)}{\sum P(B|A_i) \cdot P(A_i)} \end{aligned}$$

• Here:

- $P(\text{theory}|\text{data}) \propto P(\text{data}|\text{theory}) \cdot P(\text{theory})$
- P(theory | data): *posterior probability* (induction)
- P(data | theory): probability of the data, likelihood (deduction)
 - P(theory): prior probability
 - In words: "My degree-of-belief of a model is x%", or

"The parameter values lie in an interval [a,b] with x% probability"

A simple example

R = 1082 mm

R = 554 mr

TRT

Particles in a TRT

- Particle identification based on transition radiation
- Distinguish between electrons and charged pions

TRT

Particles in a TRT

- Assume test beam measurement
- Test beam composition:
- p(electron) = 90%
- p(pion) = 10%

- Detection efficiencies:
- p(signal | electron) = 95%
- p(signal | pion) = 6%

Your turn! What is p(electron | signal)?

Use Bayes' Theorem: P

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{\sum P(B|A_i) \cdot P(A_i)}$$

What are A_1 and A_2 and B?

Particles in a TRT

- Assume test beam measurement
- Test beam composition:
- p(electron) = 90%
- p(pion) = 10%

• Detection efficiencies:

• p(signal | pion) = 6%

$$p(e|Signal|) = \frac{p(Signal|e) \cdot p(e)}{p(Signal|e) \cdot p(e) + p(Signal|\pi) \cdot p(\pi)}$$
$$p(\pi|Nosignal|) = \frac{p(Nosignal|\pi) \cdot p(\pi)}{p(Nosignal|e) \cdot p(e) + p(Nosignal|\pi) \cdot p(\pi)}$$

Particles in a TRT

• Probabilities:

$$p(e|Signal) = \frac{0.95 \cdot 0.9}{0.95 \cdot 0.9 + 0.06 \cdot 0.10} = 0.993$$

$$p(\pi|Signal) = \frac{0.06 \cdot 0.10}{0.95 \cdot 0.9 + 0.06 \cdot 0.10} = 0.007$$

$$p(e|No signal) = \frac{0.05 \cdot 0.90}{0.05 \cdot 0.90 + 0.94 \cdot 0.10} = 0.312$$

$$p(\pi|No Signal) = \frac{0.94 \cdot 0.10}{0.05 \cdot 0.90 + 0.94 \cdot 0.10} = 0.676$$

"A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule"

Stephen Senn, Statistician & Bayesian Skeptic (mostly)

Where does prior knowledge come from?

- Prior can come from
 - personal degree-of-belief (gut feeling),
 - theoretical considerations (how badly do you want SUSY to be true?),
 - auxiliary measurements, ...
 - ... good arguments ... (in the best case)
- Elegant update of knowledge: posterior of one experiment can be prior of another experiment. Natural way to combine measurements.

P(Model | Data 1) ~ P(Data 1 | Model) x P(Model)

- and P(Model | Data 2) ~ P(Data 2 | Model) x P'(Model)
- with P' = P(Model | Data 1) = P(Data 1 | Model) x P(Model)
- → P(Model | Data 2) ~ P(Data 2 | Model) x P(Data 1 | Model) x P(Model)
 = P(Model | Data 1 + Data 2)

Criticism

- Priors are subjective
 - Yes, but it is made explicit
 - Objective Bayesian movement, try to find objective priors
 - reference priors minimize the "information"
- Prior depends on parametrization (lifetime τ vs. decay constant $\lambda = 1/\tau$)
 - Jeffreys prior invariant under reparameterization

Remarks

- Choice of (initial) prior should not play a strong role.
- Difficult to formulate a single prior for a collaboration of ~3.000 people
- Practical solution: subjunctive priors. Requote your result under different prior assumptions ("the optimist", "the pessimist", "the ignorant", ...)
- Write down your prior!

Impact of priors

Two different priors

- Model: Gaussian with (unknown) mean value between 0 and 1 (truth: 0.75), and width of 0.1
- Start with two different priors (optimistic / pessimistic).
- \rightarrow Slightly different posteriors after one event.

Kevin Kröninger - Terascale Statistics School 2018

Impact of priors

Two different priors

Model: Gaussian with (unknown) mean value between 0 and 1 (truth: 0.75), and width of 0.1

 \rightarrow About the same posterior after 100 events

Kevin Kröninger - Terascale Statistics School 2018

Parameter estimation

Parameter estimation

- Full solution: posterior probability (nothing more than that, but difficult to write down in a paper)
- For papers/talks: summarize posterior using point and interval estimates
- Common point estimators:
 - Maximum posterior probability (global mode)
 - Maximum of marginalized probability (local mode)
 - Mean value of marginalized probability
 - Median of marginalized probability:

$$p(\lambda_i|D) = \int \prod_{i\neq j} d\lambda_j p(\vec{\lambda}|D)$$

Parameter estimation

Parameter estimation

- Common interval estimates:
 - Smallest (set of) interval(s) covering 68% probability
 - (Central interval) 16% 84% quantile
 - Standard deviation of marginalized posterior (a la Gauß)
 - Upper (lower) limits: 99%, 95%, 90% (1%, 5%, 10%) quantiles

• Practical suggesstion:

Choose such that point estimator lies inside the estimated interval!

Mean	\leftrightarrow	Standard deviation
Mode	\leftrightarrow	Smallest interval
Median	\leftrightarrow	Central interval

technische universität dortmund

Parameter estimation

A 1-dim Gaussian

A bimodal distribution

Example: Poisson

technische universitä 2D bimodal distribution

technische universität Highly non-Gaussian

tu technische univer ditätmore complex) example

p(E)

Concrete model

- Data:
 - Binned, number of events
- Shapes:
 - Background linearly decreasing
 - Signal: Gaussian at fixed position
- Statistical model:
 - Independent Poisson fluctuations
 - Parameter 1: background strength, Gaussian prior
 - Parameter 2: signal strength, exponentially decreasing prior
- Fit procedure
 - Template fit: scale signal and background shapes until sum of templates matches data

Kevin Kröninger - Terascale Statistics School 2018

Update of knowledge

Kevin Kröninger - Terascale Statistics School 2018

Syst. uncertainties

Nuisance parameters

- Model = Physics model (+ par.) × Detector model (+ nuisance par.)
- Associate nuisance parameters to sources of systematic uncertainties, e.g.
 - Collider: Luminosity uncertainty (1 parameter)
 - Calorimeter: jet energy resolution (typically 3 parameters)
 - Reconstructed objects: reconstruction efficiency (*n* parameters)
 - Different physics models ?
 - ...
- Is it justified to use a nuisance parameter? Discrete vs. continuous par.
- Choose appropriate prior (typically Gaussian, sometimes flat)
- Marginalize w.r.t. all nuisance parameters
 - Remove nuisance parameter from the final answer
 - Combine systematic and statistical uncertainties

Systematic uncertainties

- Add two uncertainties:
 - Systematic 1: 10% uncertainty on signal and background yield
 - Systematic 2: 60% uncertainty on signal yield
- Priors:
 - Gaussian with mean value of 0 and width of 1 sigma

Systematic 1

22

Systematic 2

Not constrained by background

Large impact on signal

Comparing different models

- Assume you have a full set of models which all describe the data D
- Start with the naïve Bayes ansatz:
 - Assign a probability to all models $M_i: 0 \le P(M_i) \le 1$
 - If you have all models, then the sum of probabilities is 1: $\sum P(M_i) = 1$
 - Next, use Bayes' theorem to calculate the probability for each model:

 $P(M_i|D) = P(D|M_i) \cdot P(M_i) / P(D) ,$ where P(D) = $\sum P(D|M_i) \cdot P(M_i)$

• If the model has free parameters λ , then integrate them out

 $P(M|D) = \int p(M,\lambda|D) d\lambda$

Model comparison

Comparing different models

- Naïve Bayes ansatz (continues):
 - The last term can be calculated as

 $p(M_i,\lambda|D) = p(D|M_i,\lambda) \cdot P(M_i,\lambda) / \sum \int p(D|M_i,\lambda) \cdot P(M_i,\lambda) d\lambda$

- Note that there is no distinction between a model and a model with parameters (composite hypothesis)
- Example: A. Caldwell and K. Kröninger, "Signal discovery in sparse spectra: A Bayesian analysis", Phys. Rev. D 74 (2006) 092003

Comparing different models

- Bayes factors:
 - Assume posterior probabilites for two models M₁ and M₂:

 $p(M_1|D) = p(D|M_1) \cdot P(M_1) / (p(D|M_1) \cdot P(M_1) + p(D|M_2) \cdot P(M_2))$

• Calculate the posterior odds:

 $p(M_1|D) / p(M_2|D) = p(D|M_1) \cdot P(M_1) / p(D|M_2) \cdot P(M_2)$

• The ratio

 $B_{12} = p(D|M_1) / p(D|M_2)$

is referred to as Bayes factor.

Comparing different models

- Bayes factors (continued):
 - So we find

"posterior odds" = "Bayes factor" times "prior odds"

- Traditionally, for a null hypothesis H_0 and an alternative hypothesis H_1 , the ratio B_{10} gives evidence against the null hypothesis. Large values of B_{10} are an indication that the hypothesis H_0 is wrong in favour of H_1
- Bayes factors do not rely on the priors.
- If the models do not have any free parameters, then the Bayes factors are likelihood ratios. Otherwise, the parameters have to be integrated out.

Model comparison

Comparing different models

- Bayes factors (continued):
 - Rough scales:

 $B_{12} = p(D|M_1) / p(D|M_2)$

B ₁₀	Evidence against H_0
< 1	none
1 – 3.2	Not worth mentioning
3.2 - 10	substantial
10 - 100	strong
> 100	decisive

• Of course, somebody just made that up. Depends on application.

Occam's razor

- Principle that an explaination should not be unnecessarily complicated, i.e. chose the simpler models of the two if both describe the data reasonably well.
- Intuitively clear, although the more complex model could still be true.
- Bayesian reasoning includes Occam's razor: the prior probabilities for complex models are typically smaller than for complex ones, and thus are the posterior probabilities.
- Assume a simple model M₁ and a complex one M₂ with constant priors for

their parameters

 $p(\lambda_i) = 1 / c_i (c_i > 1),$

and equal prior probabilities for the models themselves, i.e.

 $p(M_1) = p(M_2) = 0.5.$

Occam's razor

• Then we find

$$p(\vec{\lambda}, M_1 | \vec{D}) = \frac{p(\vec{D} | \vec{\lambda}, M_1) \cdot p(\vec{\lambda}, M_1)}{\int d\vec{\lambda} \, p(\vec{D} | \vec{\lambda}, M_1) \cdot p(\vec{\lambda}, M_1) + \int d\vec{\lambda} \, p(\vec{D} | \vec{\lambda}, M_2) \cdot p(\vec{\lambda}, M_2)}$$

$$= \frac{p(\vec{D} | \vec{\lambda}, M_1) \cdot 0.5 \cdot \prod_{i=1}^{N_1} 1/c_i}{\int d\vec{\lambda} \, p(\vec{D} | \vec{\lambda}, M_1) \cdot 0.5 \cdot \prod_{i=1}^{N_1} 1/c_i + \int d\vec{\lambda} \, p(\vec{D} | \vec{\lambda}, M_2) \cdot 0.5 \cdot \prod_{i=1}^{N_2} 1/c_i}$$

 ${\scriptstyle \bullet}$ So the posterior probability for $\rm M_{_1}$ will increase, the more parameters we add.

Computational steps

Numerical issues

- Point estimate:
 - Maximization of posterior
 - Typical tool: Minuit
 - Also: Simulated annealing
- Calculation of marginal distributions:
 - Analytical solutions usually difficult
 - Numerical integration methods, e.g. VEGAS
 - Sampling methods:
 - Hit&miss, simple Monte Carlo, ...
 - Importance sampling
 - Markov Chain Monte Carlo (MCMC)
 - Revolution of Bayesian computation

MCMC

How does MCMC work?

- Output of Bayesian analyses are posterior probability densities, i.e., functions of an arbitrary number of parameters (dimensions).
- Sampling large dimensional functions is difficult.
- Idea: use random walk heading towards region of larger values (probabilities)
- Metropolis algorithm

N. Metropolis *et al.*, J. Chem. Phys. 21 (1953) 1087.

- Start at some randomly chosen x_i
- Randomly generate y around x_i
- If $f(y) > f(x_i)$ set $x_{i+1} = y$
- If $f(y) < f(x_i)$ set $x_{i+1} = y$ with prob. $p=f(y)/f(x_i)$
- If y is not accepted set $x_{i+1} = x_i$
- Start over

MCMC

MCMC for Bayesian inference

• Use MCMC to sample the posterior probability, i.e.

 $\boldsymbol{f}(\vec{\lambda}) = \boldsymbol{p}(\vec{D} \mid \vec{\lambda}) \, \boldsymbol{p}_{0}(\vec{\lambda})$

Marginalization of posterior:

 $\boldsymbol{p}(\lambda_i \,|\, \vec{\boldsymbol{D}}) = \int \boldsymbol{p}(\vec{\boldsymbol{D}} \,|\, \vec{\lambda}) \, \boldsymbol{p}_0(\vec{\lambda}) \boldsymbol{d} \, \vec{\lambda}_{j \neq i}$

- Fill a histogram with just one coordinate while sampling
- Error propagation: calculate any function of the parameters while sampling
- Point estimate: find mode while sampling

Does it work?

• Test MCMC on a function:

 $f(x) = x^4 \sin(x^2)$

- Compare MCMC distribution to analytic function
- Several minima/maxima are no problem.
- Different orders of magnitude are no problem.
- But: need to make sure that these chains converge towards the true distribution

MCMC

technische universität

Convergence

8

2

0

-1

- This is where it get's difficult...
- Add a burn-in phase

• Use multiple chains

dortmund

MCMC

BAT

Bayesian Analysis Toolkit

- Tool for Bayesian inference written in C++
- Based on the ROOT-core functionality, interface to RooStats
- Uses MCMC for the calculation of the posterior probability
- Full control over convergence, automatic adjustment of step size
- Further algorithms: interface to CUBA, Minuit; importance sampling, simulated annealing, ...
- Pre-defined models: histogram fitter, template fitter, tool for combination of measurements, ...
- Web page: http://www.mppmu.mpg.de/bat/
- Contact: bat@mppmu.mpg.de
- Paper on BAT:

A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit Comp. Phys. Comm. 180 (2009) 2197-2209 [arXiv:0808.2552].

https://github.com/bat/bat

Kevin Kröninger - Terascale Statistics School 2018

Kevin Kröninger - Terascale Statistics School 2018

Rare b-meson decays

dortmund

Tree-level FCNC forbidden in the SM

technische universität

- Effective field theory: add eff. operators to Lagrangian
- Similar to Fermi's four-point interaction
- Physics case: search for non-SM contributions
- Model parameters:
 - 3 Wilson coefficients
 - •25 nuisance parameters
- Input:
 - 59 measurements from BaBar, Belle, CDF, LHCb
 - Theory calculations, quark masses, CKM parameters, ...
- Numerically difficult ~ impossible with MCMC

A complex example

A complex example

Rare b-meson decays

Use MCMC plus population MC

	Pro	Con
MCMC	local exploration, learns on the fly	trapped in local maxima
PMC	massive parallelization, yields normalization, multiple modes OK	very sensitive to initialization

• Dominant contribution: $BR(B \rightarrow Kll) \propto |C_9|^2 + |C_{10}|^2$

Frederic Beaujean *et al.* JHEP 08(2012)030

A complex example

Rare b-meson decays

- Posterior probability well sampled
- No hint for new physics
- Showed necessity to implement new numerical algorithms
- Example:
 - F. Beaujean *et al.*, *Initializing adaptive importance sampling with Markov chains*, arXiv:1304.7808

Frederic Beaujean *et al.* JHEP 08(2012)030

0.5

1.0

5

-5

-10

-15

-1.0

-0.5

0.0

 C_7

<u></u>2

Summary

Summary

- Knowledge is justified belief
- Bayesian probability is degree-of-belief
- Bayes' theorem allows easy update of knowledge
- Everything else is about math and numerical methods:
 - Parameter (point and interval) estimation
 - Treatment of systematic uncertainties
 - Calculation of marginalized distributions
 - Also: model comparison and goodness-of-fit (not covered)
- Numerical methods necessary for complex fit with a large number of parameters