

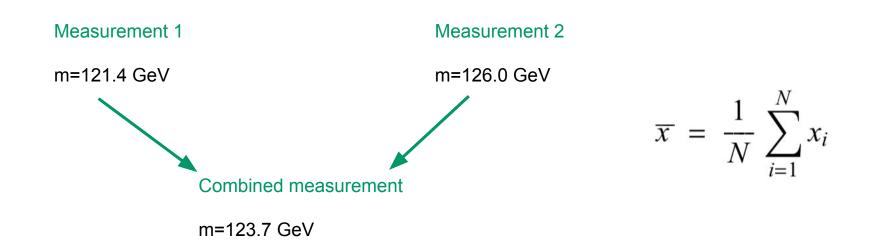
Propagation of systematics

Lydia Brenner

19-23 Feb 2018

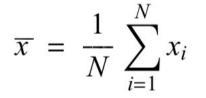
DESY Terascale School of Statistics

Example Measurement of the Higgs boson mass



Example Measurement of the Higgs boson mass

Adding uncertainties

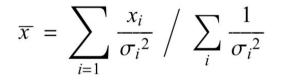


Measurement 1 m=121.4±0.8 GeV m=126.0±0.4 GeV $(\delta \overline{x})^2 = \sum_{i=1}^N \left(\frac{\partial \overline{x}}{\partial x_i} \, \delta x_i\right)^2 = \sum_{i=1}^N \left(\frac{\delta x_i}{N}\right)^2$

m=123.7±0.45 GeV

Example Measurement of the Higgs boson mass

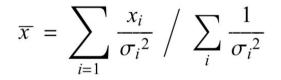
Weighted average!



Measurement 1 m=121.4±0.8 GeV $m=126.0\pm0.4 \text{ GeV}$ $(\sigma_{\overline{x}})^2 = \frac{\sum_{i=1}^{i} (\sigma_i^{-2} \sigma_i)^2}{(\sum_i \sigma_i^{-2})^2} \implies \sigma_{\overline{x}} = \sqrt{\frac{1}{\sum_i \sigma_i^{-2}}}$

Example Measurement of the Higgs boson mass

Weighted average!



Measurement 1 m=121.4±0.8 GeV $m=126.0\pm0.4 \text{ GeV}$ $(\sigma_{\overline{x}})^2 = \frac{\sum_{i=1} (\sigma_i^{-2} \sigma_i)^2}{(\sum_i \sigma_i^{-2})^2} \implies \sigma_{\overline{x}} = \sqrt{\frac{1}{\sum_i \sigma_i^{-2}}}$

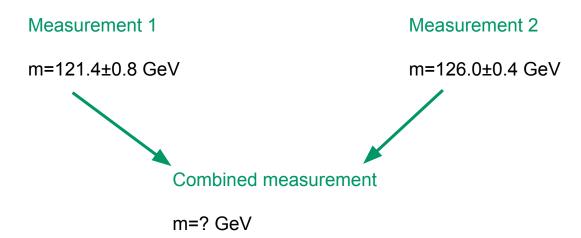
m=125.1±0.36 GeV

Compare to: m=123.7±0.45 GeV

DESY Terascale School of Statistics

Example Measurement of the Higgs boson mass

What if the errors are not independent? As is the case for (some) systematics



Incorporate systematics

Question How can we incorporate the systematic error due to using an incorrect model?

Incorporate systematics

Question How can we incorporate the systematic error due to using an incorrect model?

Answer Improve the model - introduce more adjustable parameters into the model

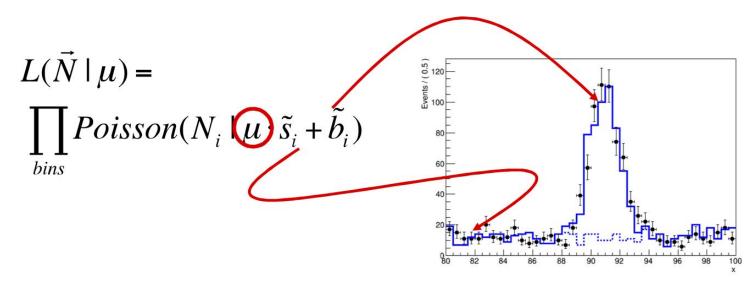
Difficult to decide how to introduce the additional parameters.

Definition of systematic uncertainty

"Systematic uncertainties are all uncertainties that are not directly due to the statistics of the data."

Simple (ideal) example

Create a likelihood function for a measurement where signal and background have perfectly known properties



Modelling uncertainties

Additional model parameters — Nuisance Parameters $L(\vec{N} \mid \mu) = \prod Poisson(N_i \mid \mu \cdot \tilde{s}_i + \tilde{b}_i)$ bins Events / (0.5) Events / (0.2 Section 2 $L(x | f, m, \sigma, a_0, a_1, a_2) = fG(x, m, \sigma) + (1 - f)Poly(x, a_0, a_1, a_2)$ **DESY Terascale School of Statistics**

L. Brenner

Modelling uncertainties

Additional model parameters — Nuisance Parameters

- Is this model correct?
- Is it flexible enough?
- How do model parameters connect to known detector/theory uncertainties?

Better to add parameters based on known systematic uncertainties on the analysis.

$$L(x | f, m, \sigma, a_0, a_1, a_2) = fG(x, m, \sigma) + (1 - f)Poly(x, a_0, a_1, a_2)$$

DESY Terascale School of Statistics

Typical systematic uncertainties

Uncertainty from the statics of the MC simulation

- Effect of uncertainties on MC sample size

Theory related

- Difference between simulators (for example: Sherpa vs MG5)
- Uncertainty on the cross-section

Detector simulation related

- Jet energy scale
- B-tagging efficiency

Naive approach to systematics

Vary setting — → rerun analysis — → observe the difference

- Make a nominal measurement
- Change a setting '1 sigma' up and down redo measurement
- Systematic uncertainty assumed to be propagated effect of shifted setting

$$\mu = \mu_{nom} \pm \sigma_{stat} \pm (\mu_{syst}^{up} - \mu_{syst}^{down}) / 2 \pm \dots$$
From statistical analysis Systematic uncertainty from error propagation

Naive approach to systematics

Vary setting — rerun analysis — observe the difference

Pro Easy to do

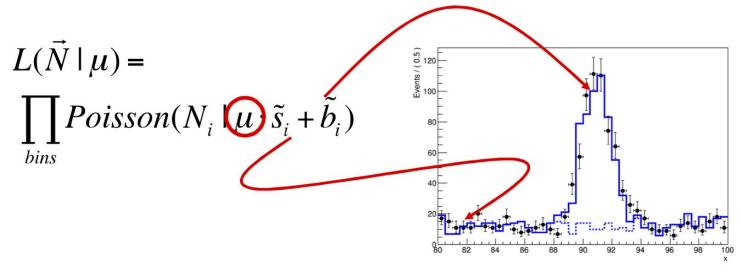
Con loss of information

Solution 'Profiling' Incorporate a description of systematic uncertainties in the likelihood function. How?

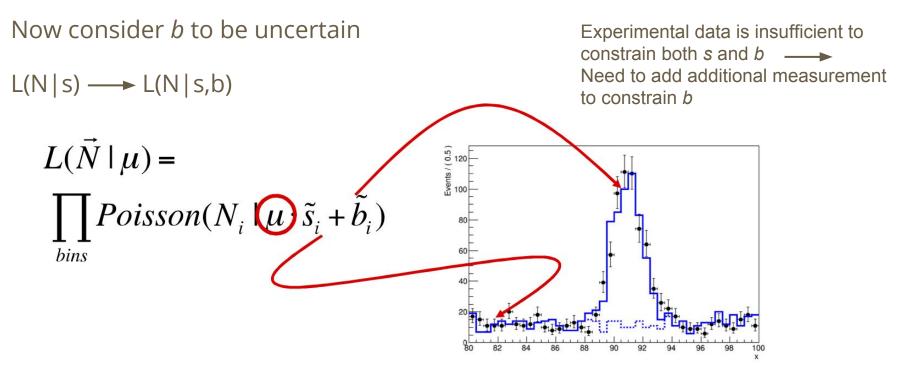
Back to simple (ideal) example

Model with fixed b

Likelihood is defined as P(observed data | theory)



Back to simple (ideal) example



Sideband measurement

Use a Control Region (CR) to estimate level of background in a Signal Region (SR)

Define *b* as the amount of background in the SR

Define au as a scale factor for the difference in size between SR and CR

$$L_{SR}(s,b) = Poisson(N_{SR} | s+b)$$
$$L_{CR}(b) = Poisson(N_{CR} | \tilde{\tau} \cdot b)$$

Simultaneous fit to the full likelihood

$$L_{full}(s,b) = Poisson(N_{SR} | s+b) \cdot Poisson(N_{CR} | \tilde{\tau} \cdot b)$$

bood $V_{CR} | \tilde{\tau} \cdot b)$ Terascale School of Statistics

From sideband to systematic uncertainty

Sideband is not a systematic uncertainty

 $L_{full}(s,b) = Poisson(N_{SR} | s+b) \cdot Poisson(N_{CR} | \tilde{\tau} \cdot b)$

If *b* is taken from MC simulation

- For example: 8% cross-section uncertainty (systematic) 'Measured background rate by MC simulation'

$$L_{full}(s,b) = Poisson(N_{SR} | s+b) \cdot Gauss(\tilde{b} | b, 0.08)$$

'Subsidiary measurement' of background rate

Subsidiary measurement

Definition of systematic uncertainty

"Systematic uncertainties are all uncertainties that are not directly due to the statistics of the data."

What is included in "the statistics of the data"?

- Subsidiary measurements?
- Control measurements?
- Calibrations?

---- Can model systematics like sidebands in the likelihoods

Definition of systematic uncertainty

Systematic uncertainty includes

- Parameter(s) of which the true value is unknown
- A model that describes the effect of those parameters on the measurement
- A subsidiary measurement
 - ---> Implies a specific distribution: Gaussian, Poisson or other

Profiled likelihood

 $L(N, 0 | s, \alpha) = Poisson(N | s + b(\alpha)) \cdot Gauss(0 | \alpha, 1)$

Where the nuisance parameters are "profiled"

Constraint term

 $Gauss(0 | \alpha, 1)$

It "constrains" the parameter lpha

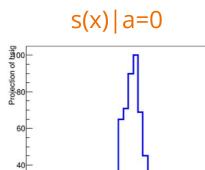
Shape systematics

So far we looked at counting measurements.

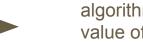
Same technique for shape fits.

s(x)|a=-1

92 94 96 98

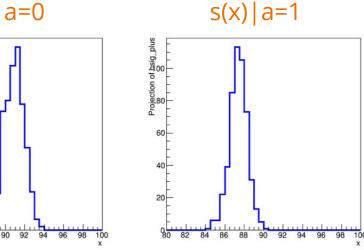


DESY Terascale School of Statistics



Need to define a Morphing algorithm to define s(x) for every value of a.

More on this tomorrow!



L. Brenner

Projection of hsig_min

Overconstrained

All systematic uncertainties are calculated under the assumption that your model is correct.

- Some systematic uncertainties are not described well by one parameter.
- Theory uncertainties: Difficulties are not in modelling procedure but in what we know.

Try to think about how many degrees of freedom your systematic uncertainty has: Is the true point covered by your NP?

Construct a likelihood function that describes your measurement

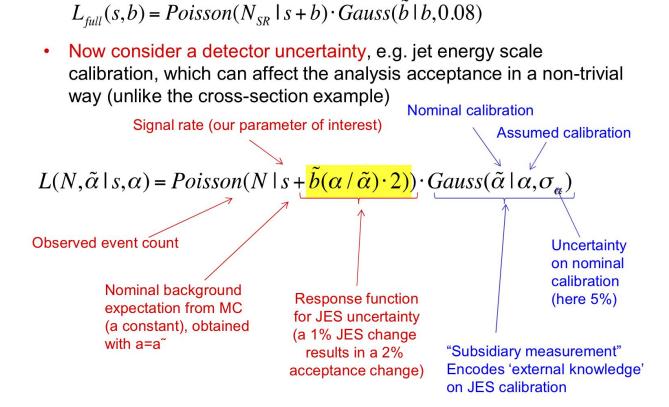
Nuisance parameters can be incorporated by Profiling

- Not dependent on method (Frequentist/Bayesian)

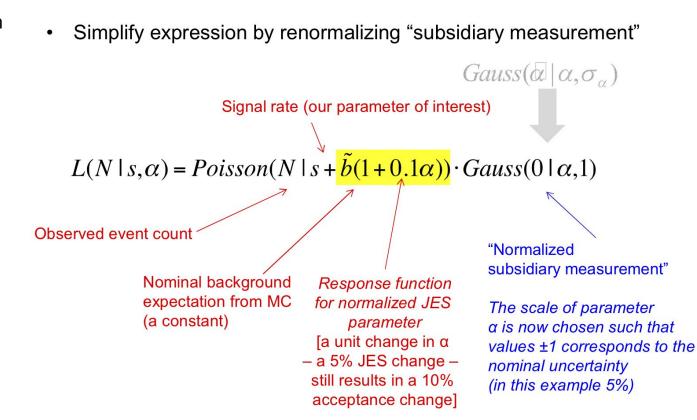
Important to check your profiled likelihood model

- Overconstrained

Modeling a detector calibration uncertainty



Modeling a detector calibration uncertainty

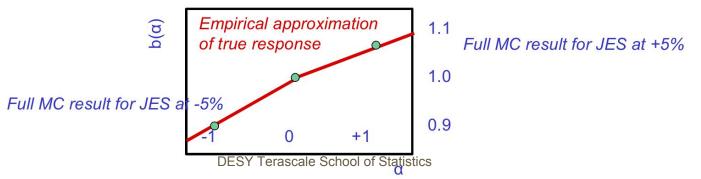


The response function as empirical model of full simulation

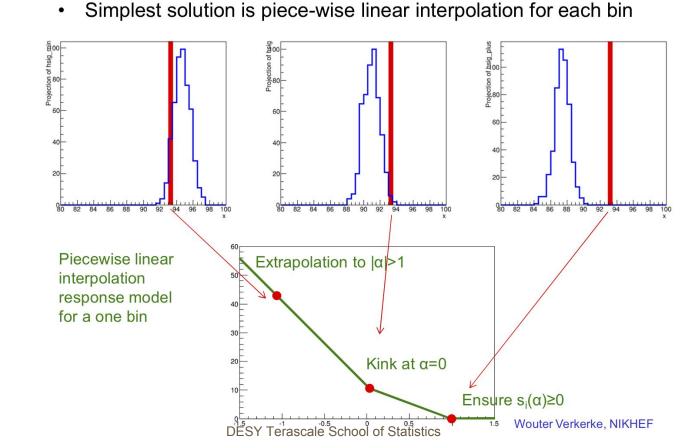
$$L(N,0|s,\alpha) = Poisson(N|s+b(\alpha)) \cdot Gauss(0|\alpha,1)$$

- Note that the response function is generally not linear, but can in principle *always be determined by your full simulation chain*

 - Typically, run full MC chain for nominal and ±1σ variation of systematic uncertainty, and approximate response for other values of NP with interpolation
 - For example run at nominal JES and with JES shifted up and down by ±5%



Piecewise linear interpolation



Visualization of bin-by-bin linear interpolation of distribution



L. Brenner