SVD SOFTWARE COG RECONSTRUCTION

Giulia Casarosa & Michael De Nuccio

Face2Face Tracking Meeting ~ Pisa December, 5th 2017

Overview

Mathematical The Center of Gravity Reconstruction

Mathebric Performances on Simulation

Mathematical Sciences on 2017 TestBeam data

CoG Reconstruction

Strip Reconstruction

APV25 Shaper Output, example from construction data

- ➡ The charge of the strip is the largest among the 6 samples
- ➡ The hit time reconstruction is entrusted to the Center-of-Gravity (CoG) algorithm
 - the CoG is the simple average of the time of the sample weighted with its amplitude
 - correction are applied, details are reported later

NOTE: the CoG reconstruction is the current default reconstruction, but we are studying more powerful algorithms, in particular a reconstruction based on Neural Network that will be discussed in the next talk.

Simple Clustering

- Clustering steps:
 - 1. look for adjacent strips if S/N > 3 until no strip to be added is found
 - 2. if the cluster candidate contains a seed strip with S/N > 5, the cluster is finalised and provided to the SVDSpacePointCreator
- Cluster time and position determination:
 - the position is computed as the center of gravity/head-to-tail
 - the time is computed as average of the strip time weighted with the strip charge

NOTES:

- not using the hit time information (to reject off-time strips adjacent to signal strips) ok for Phase2
- not using the defect map, (e.g. opens will break cluster) ok for Phase2

Giulia Casarosa

CoG Hit Time Reconstruction

→ the time estimator uses amplitude (A_n) and time (T_n) of the nth sample

$$T_{\text{raw}} = \frac{\sum_{n=0}^{5} A_n \cdot T_n}{\sum_{n=0}^{5} A_n}$$

- The raw average does not represent the hit time, we need to calibrate it.
- V/N and U/P strips show a different waveform: the signal induced by electrons is faster (x3) than the one induced by holes. [the different height of the waveforms is due to I-strip (N side) vs 2-strip (P side) clusters]

Peaking Time Correction

- We want the hit time = the time at which the APV25 pulse starts rising
- From the raw time we can correct for the rising time of the pulse using the a strip-dependent calibration constant
 - the correction depends on the capacitance seen by the APV25

histo_U_averagetime_Calibrated

The Trigger Bin (U side)

- We know the trigger arrival with a better precision than the APV clock period (31.44 ns)
- The trigger bin (i) contains the following informations: in which of the 8 ns wide time window the trigger signal has arrived:

$$T_{CoG} = T_{raw} - (4 + 8 \cdot i)$$

Investigation on the Residual Shift

50

The Trigger Bin Correction (V side)

Half-Summary

- The CoG is basically a weighted average of the samples with corrections that depend on:
 - strip-by-strip peaking time (calibration constant)
 - trigger bin-related constants (can be estimated on data)
 - we apply an additional shift to center the reconstructed time around 0 ns (can be estimated on data)
- ➡ The CoG is a robust estimator if used to estimate relative times:
 - all strips in the same event belong to the same trigger bin
 - all APVs in the SVD are synchronized
- The CoG on the N/V side is expected to be more precise because electrons move faster in the silicon, and consequently the signal is faster

Performance

Performance on Simulated data

➡ From ShaperDigits to RecoDigits efficiency = 100% by construction

Strip Fit Efficiency (RecoDigits / ShaperDigits)

20171205

Clustering Efficiency & Purity

→ Simulated and reconstructed 10kY(4S) events + background overlay

- Clustering efficiency higher than 99.5% (considering primary charged particles)
- Cluster purity dominated by machine background hits

Cluster Internal Purity

Fraction of Truth-matched Recos inside a Truth-matched Cluster

- ➡ Much less than 1% of the clusters contain a strip that is not related with a true hit
 - we do not expect bias in position or time due to the inclusion of a background strip in a signal cluster

20171205

Cluster Position Resolution

➡ U and V cluster position are unbiased

Cluster Time Resolution

→ V cluster time resolution ~ 4.5 ns, U cluster time resolution is ~1 ns worse:

Cluster Time Resolution - U/P side

Cluster Time Resolution (L3, Barrel, sideU)

- After eliminating the outliers, there is a visible tail on the left side of the distribution, the resolution arrives to 4.2 ns
- Considering the width in each trigger bin, since all cluster in an event belong to the same trigger bin, the resolution improves significantly to 2.5 ns

Cluster Time Resolution TriggerBin=3(L3, Barrel, sideU)

Giulia Casarosa

Cluster Time Resolution - V/N side

Cluster Time Resolution (L3, Barrel, sideV)

- ➡ After eliminating the outliers, there is a visible tail on the left side of the distribution, the resolution arrives to 3.5 ns
- Considering the width in each trigger bin, since all cluster in an event belong to the same trigger bin, the resolution improves significantly to 2 ns

Cluster Time Resolution TriggerBin=3(L456, Barrel, sideV)

Giulia Casarosa

Performance of CoG on TB data

➡ time estimator uses amplitude (A_n) and time (T_n) of the nth sample

$$T_{\text{raw}} = \frac{\sum_{n=0}^{5} A_n \cdot T_n}{\sum_{n=0}^{5} A_n}$$

L4 hit time for L5 hit time between 73 and 74 ns

Time Correlation between L4 and L5, N sides

- promising results
 - time resolution around 5 ns for the N side and 7 ns for P side

Corrected Time Determination

- After the application of the previously described correction:
 - expected squeeze around 0 on both layers
 - resolution is not significantly improved

L4 hit time for L5 hit time between 1 and 2 ns

 ... but combinatorial background still there, let's use tracking and clusters.

Hit Time Correlation between L4 and L5, N sides

Same-Side Clusters Related to Tracks

- ➡ Use VXDTF1 to find tracks and only use clusters related to the same track
- → Significant improvement of the resolution $\rightarrow 2.7$ ns

L4 cluster time for L5 cluster time between 2 and 3 ns

track-related cluster times on L4 and L5 V sides

- The L4V side cluster resolution reported on the left plot is the convolved with the L5V side resolution
- Agreement with what observed in the simulation, even if it is Phase3 simulation (different kinematics of the tracks)

Opposite-Side Clusters Related to Tracks

The CoG on the U side has a worse performance

track-related cluster times on L5 U vs V sides

Conclusions

- → The CoG is a corrected weighted average of the samples time with their amplitude
- ➡ It is a robust estimator if used to estimate relative times:
 - all strips in the same event belong to the same trigger bin
 - all APVs in the SVD are synchronized
- ➡ The CoG-based reconstruction has a clustering efficiency greater than 99.6%
- The cluster time determination can potentially reach precisions of the order of 2-3 ns, assuming no trigger jitter
- → The effect of trigger jitter will be studied in details in the next weeks.

Trigger Arrival Correction

- → We know the trigger arrival with a better precision than the APV clock period (31.44ns) → trigger bin
- → We can further correct our estimation shifting it by the time between the trigger arrival and the actual action of our DAQ (precision of 31.44/4/ $\sqrt{12} \approx 2.3$ ns)

Preview of Performance on Signal Strips

Time Correlation between L4 and L5, N sides

20171205