Studies of low-x higher twists @ HERA & strangeness @ ATLAS and CMS (two separate analysis)

Both analyses done using xFitter & MandyFitter :)

K. Wichmann, A. Cooper-Sarkar, I. Abt, B. Foster, V. Myronenko, M. Wing, P. Gunnellini

07.03.18

Low-x low-Q² higher twists @ HERA

K. Wichmann, A. Cooper-Sarkar, I. Abt, B. Foster, V. Myronenko, M. Wing

Phys. Rev. D 94, 034032 (2016), arXiv:1604.02299 Phys. Rev. D 96, 014001 (2017), arXiv:1704.03187

DESY

HERAPDF2.0 @ low Q² and low x

• NLO fit for $Q_{min}^2 = 3.5 \text{ GeV}^2$ • Let's see how HERA low Q^2 , low x data are described by predictions χ^2 /dof = 1357/1131 NNLO fit for Q_{min}^2 = 3.5 GeV² Not that great... χ^2 /dof = 1363/1131 H1 and ZEUS $\sigma_{r, NC}^{+}$ $Q^2 = 3.5 \text{ GeV}^2$ $Q^2 = 2 \text{ GeV}^2$ $Q^2 = 2.7 \text{ GeV}^2$ $Q^2 = 4.5 \text{ GeV}^2$ 10⁻³ 10⁻¹ 10⁻³10 0 10^{-1} $Q^2 = 6.5 \text{ GeV}^2$ $Q^2 = 8.5 \text{ GeV}^2$ X_{Bj} HERA NC $e^+p 0.5 fb^{-1}$ 1 $\sqrt{s} = 318 \text{ GeV}$ HERAPDF2.0 NNLO Λ

xFitter external meeting

Higher-twist corrections

- higher twist terms acting at low-x considered
- their origin COULD be connected with the recombination of gluon ladders
- Bartels, Golec-Biernat, Peters suggested that such higher twist terms would cancel between σ_L and σ_T in F_2 , but remain strong in F_L
- simplest possible modification to structure functions F_2 and F_L as calculated from HERAPDF2.0 formalism tried

$$F_2^{\text{HT}} = F_2^{\text{DGLAP}} \quad (1 + \frac{A_2^{\text{HT}}}{Q^2})$$

$$F_L^{\text{HT}} = F_L^{\text{DGLAP}} \quad (1 + \frac{A_L^{\text{HT}}}{Q^2})$$

has almost no effect

helps a lot, A~4-5

xFitter external meeting

Let's be bold and fit from $Q^2 = 2 GeV^2$ $Q_{min}^{2} = 3.5 \, GeV^{2}$ Q_{min}^2 = 2 GeV² NLO $A_{I}^{HT} = 4.0 \pm 0.6 \text{ GeV}^2$ $A_{HT} = 4.2 \pm 0.7 \text{ GeV}^2$ $A_{I}^{HT} = 5.2 \pm 0.7 \text{ GeV}^2$ **NNLO** $A_{1}^{HT} = 5.5 \pm 0.6 \text{ GeV}^{2}$ Look at the excellent description at low Q^2 ^{1.4} ^{1.4} ^{1.4} $O^2 = 2 GeV^2$ $O^2 = 2.7 \text{ GeV}^2$ $O^2 = 3.5 \text{ GeV}^2$ $Q^2 = 4.5 \text{ GeV}^2$ 0.8 0.6 0.4 0.2 $\frac{1}{10} \cdot 10^{-4} \cdot 10^{-3} \cdot 10^{-2} \cdot 10^{-1} \cdot 10^{-5} \cdot 10^{-4} \cdot 10^{-3} \cdot 10^{-2} \cdot 10^{-1}$ 0 1.6 $Q^2 = 8.5 \text{ GeV}^2$ $Q^2 = 6.5 \text{ GeV}^2$ X_{Bi} 1.4 1.2 • HERA NC $e^+p 0.5 fb^{-1}$ 1 0.8 $\sqrt{s} = 318 \text{ GeV}$ 0.6 $= \text{HHT NNLO, } Q_{\text{min}}^2 = 2.0 \text{ GeV}^2$ 0.4 0.2 10⁻⁵ x_{Bj}

But beware... is this actually reasonable?

What does F_L itself look like?

- NNLO HHT FL prediction untamed at low Q²
- this approach can't be pushed too far
- this comes from NNLO coeff. functions and the 1/Q² term makes it worse

Used in MC tuning: underlying event

- Interest in MC community for PDF describing data well down to lowest possible Q²
 - HHT NLO AG can be used → AG (alternative gluon): no negative gluon term
 - First use: tune for underlying event, private work done in CMS

PTmax Direction

"Toward"

"Awav"

"TransMA

Jet #3

'oward-Side" Jet

'Awav-Side" Jet

Δø

Leading Object

Direction

"Toward"

"Away'

Δφ

"Transverse_7

P. Gunnellini, private communication

MC tuning

• Global variable: compares well with standard Monash tune with NNPDF

MC tuning: comparison to ATLAS data Phys. Rev. D 83 (2011) 112001

- Compares well with standard Pythia Monash tune
 - Sometimes better / sometimes a bit worse

- Work in progress \rightarrow hope that for tunes with lower energies PDF better describing low Q² will be beneficial

QCD analysis of the ATLAS and CMS W± and Z cross-section measurements and implications for the strange sea density arXiv:1803.00968

K. Wichmann, A. Cooper-Sarkar

xFitter external meeting

Motivation

- In PDF fits x ~ 0.01 primarily constrained by HERA data: light flavor quarks and antiquarks
- flavor composition of total light sea not well determined using HERA data alone

 \rightarrow in particular little is known about strange sea

- Neutrino data suggest suppression of strange sea: sbar(x) = 0.5 dbar(x)
 - CMS W+charm analysis supports suppression
 - ATLAS W+charm analysis finds no suppression
 - Interpretation of neutrino data is sensitive to uncertainties from charm fragmentation and nuclear corrections
 - Analysis of W+c data involve assumptions on charm jet fragmentation and hadronisation
- Drell-Yan process and DIS are theoretically best understood processes

 \rightarrow Interesting to investigate if this disagreement is present for the inclusive Drell Yan data of ATLAS and CMS

DESY

Input data sets additionally to HERA DIS

- CMS
 - Z at 7 TeV \rightarrow full covariance matrix for uncertainties CMS Collaboration, JHEP 12 (2013) 030, [arXiv:1310.7291].
 - W asymmetries at 7 TeV → systematic correlations
 CMS Collaboration, Phys. Rev. D 90 (2014) 032004, [arXiv:1312.6283].
 - W⁺⁻ cross sections (cross-checked with W asymmetries) at 8 TeV → systematic correlations
 CMS Collaboration, Eur. Phys. J. C 76 (2016) 469, [arXiv:1603.01803].
 - Z at 8 TeV \rightarrow full covariance matrix for uncertainties \rightarrow cross-check CMS Collaboration, Eur. Phys. J. C 75 (2015) 147, [arXiv:1412.1115].
- ATLAS
 - W and Z cross sections from one data sets correlations \rightarrow correlated systematic uncertainties as nuisance parameters

ATLAS Collaboration, Eur. Phys. J. C 77 367 (2017), [arXiv:1612.03016]

 \rightarrow for Z data we use only Z-mass-peak measurements \rightarrow off-peak data added for cross-check

QCD analysis

- QCD analysis at NNLO, following ATLAS paper, using xFitter + independent code
 - RTOPT, Q^2 of HERA data from 7.5 GeV²
 - K-factors, APPLGRID predictions
- Parameterisation: 15 free parameters, 2 for strange sea
 - Chosen after parameterisation scan

$$\begin{aligned} xu_{v}(x) &= A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}), \\ xd_{v}(x) &= A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ x\bar{u}(x) &= A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x) &= A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}}, \\ xg(x) &= A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ x\bar{s}(x) &= A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}}, \end{aligned}$$

$$(22)$$

where $A_{\bar{u}} = A_{\bar{d}}$ and $B_{\bar{s}} = B_{\bar{d}} = B_{\bar{u}}$. Given the enhanced sensitivity to the strange-quark distribution through the ATLAS data, $A_{\bar{s}}$ and $C_{\bar{s}}$ appear as free parameters, assuming $s = \bar{s}$. The experimental data uncertainties are propagated to the extracted QCD fit parameters using the asymmetric Hessian method based on the iterative procedure of Ref. [128], which provides an estimate of the corresponding PDF uncertainties.

xFitter external meeting

Fits to CMS & ATLAS data separately

This ratio is unity if strange quarks are not suppressed in relation to light quarks and is ~ 0.5 for the conventional level of suppression.

- Valence, gluon and total sea similar
- Break-up of sea sensitive to LHC data different for CMS and ATLAS
- at small x neither data support conventional level of suppression
- For x > 0.1 parameterisation uncertainties usually large

Fits to CMS & ATLAS data together

- Valence, gluon and total sea similar
- Flavor break up of sea is similar at small x for W and Z data separately
- Both data sets support unsuppressed strangeness
 - Most information comes from Z data
 - For ATLAS correlations between Z and W important
- For x > 0.1 parameterisation uncertainties become large

Wichmann

CMS vs ATLAS vs both

- Experimental uncertainties
- Valence, gluon and total sea are similar for PDFs from ATLAS and CMS data, small differences well within uncertainties
- Strange distributions differ
- For x ~ 0.01 CMS ratio 1-2 sigma lower then ATLAS ratio

07.03.18

Constraining power of various datasets

- Valence quarks best constrained by both CMS and ATLAS W data
- For total sea Σ ATLAS Z most constraining
 - followed by ATLAS W, CMS W and CMS Z
- Same ordering seen for ubar and dbar and is most pronounced for s and R_s

DESY

 $\overline{\mathbf{x}}$

Fit quality

- Total and partial χ^2 s for W/Z data samples good
- ATLAS + CMS with central Z fit \rightarrow MainFit \rightarrow CSKK
- clear that greater accuracy of ATLAS data dominates CSKK fit
 - combined fit has unsuppressed strangeness
 - CMS data are not in tension with this result $\to \chi^2$ for CMS data is still very good

	ATLAS and CMS W	ATLAS and CMS Z	ATLAS and CMS			\mathbf{i}		3.12
			W and Z , CSKK fi	;				Ĩ
Total χ^2/NDF	1265/1096 = 1.15	1244/1086 = 1.15	1308/1141 = 1.15				\mathbf{N}	
Data set, χ^2/NDP							\mathbf{A}	<u>ב </u>
HERA	1159/1056	1157/1056	1163/1056	\neg				I - <u>i</u>
ATLAS W^+	12/11		13/11			CMS Z7	CMS W7,8	CMS Z7 + W7,8
ATLAS W^-	8/11		9/11		Total χ^2/NDF	1218/1965	1225/1074	1236/1098
ATLAS central CC Z		14/12	16/12		Data set, χ^2/NDP			
ATLAS central CF Z		9/9	7/9		HERA	1156/1056	1157/1056	1157/1056
CMS 7 TeV central Z		12/24	12/24		CMS 7 TeV central Z	11/24		11/24
CMS 7 TeV W-asym.	13/11		14/11		CMS 7 TeV W-asymmetry		13/11	13/11
CMS 8 TeV W^+, W^-	6/22		5/22		CMS 8 TeV W^+, W^-		4/22	4/22

Hesse uncertainty .vs. MC replicas

δ**χυ_ν/χυ**

1.05

0.95

Q² = 1.9 GeV² CSKK MC replicas CSKK Hesse 1.2 0.9 0.8 0.8

10-4

10⁻³

- Cross check done using MC replicas
- PDFs obtained with both methods agree well
- Uncertainties compatible §

10⁻²

10⁻¹

x

Data description: W

3.18

DESY

 $\overline{\mathbf{x}}$

Data description: Z

xFitter

external meeting

Adding Z off-peak data

- We added off-peak Z data \rightarrow high mass first and then low mass
- results not changed substantially
- experimental uncertainties are also not much reduced
 - \rightarrow larger theoretical uncertainties, from electroweak effects and photon induced processes \rightarrow MainFit CSKK contains peak data only

Adding CMS Z @ 8 TeV

K. Wichn

- CMS Z @ 8 TeV peak data + low/high mass added
- These data also do not change the result substantially
 - Valence, gluon, sea very similar
 - Strangeness consistent
- In fact the CMS 8 TeV Z-peak data favor even larger strangeness than CSKK for small x

Main fit: CSKK

- We consider CSKK as our main fit
 - HERA inclusive data + W data + Z peak data
- Our main conclusion about data sets
- \rightarrow There is no tension between the HERA data and the LHC data or between the LHC data sets
- We consider $R_s=rac{s+ar{s}}{ar{d}+ar{u}}$ distribution our main result
 - For comparison with ATLAS result we also calculate $R_{_{\!\!S}}$ at certain x and Q^2 values
 - Results with experimental, model and parameterisation uncertainties

xFitter external meeting

Variation	Total χ^2/NDF	$R_s = \frac{s + \bar{s}}{\bar{d} + \bar{u}}$			
		x = 0.023,	x = 0.013,		
		$Q_0^2=1.9~{\rm GeV^2}$	$Q_0^2=8317~{\rm GeV^2}$		
Nominal CSKK fit	1308 / 1141	1.14	1.05		
Model variations					
$Q^2_{ m min}=5~{ m GeV^2}$	1375 / 1188	1.14	1.06		
$Q^2_{ m min}=10~{ m GeV^2}$	1251 / 1101	1.14	1.05		
$m_b = 4.25 \; \mathrm{GeV}$	1307 / 1141	1.12	1.04		
$m_b = 4.75 \; \mathrm{GeV}$	1310 / 1141	1.16	1.06		
$\mu_{f_0}^2 = 1.6~{ m GeV}^2$ and $m_c = 1.37~{ m GeV}$	1312 / 1141	1.16	1.06		
$\mu_{f_0}^2=2.2~{ m GeV}^2$ and $m_c=1.49~{ m GeV}$	1308 / 1141	1.12	1.05		
$\alpha_s(M_Z)$ variations					
$\alpha_s(M_Z) = 0.116$	1308 / 1141	1.12	1.04		
$\alpha_s(M_Z) = 0.117$	1308 / 1141	1.13	1.05		
$lpha_s(M_Z)=0.119$	1309 / 1141	1.14	1.06		
$\alpha_s(M_Z) = 0.120$	1310 / 1141	1.15	1.06		

Parameterisation uncertainty

Variation	Total χ^2/NDF	$R_s = rac{s+ar{s}}{ar{d}+ar{u}}$			
		x = 0.023,	x = 0.013,		
		$Q_0^2=1.9~{\rm GeV^2}$	$Q_0^2=8317~{\rm GeV^2}$		
Nominal CSKK fit	1308 / 1141	1.14	1.05		
Parameterisation variations					
$B_{ar{s}}$	1308 / 1140	1.12	1.05		
D_{u_v}	1308 / 1140	1.13	1.05		
D_{d_v}	1308 / 1140	1.14	1.05		
D_g	1306 / 1140	1.15	1.06		
$D_{ar{u}}$	1305 / 1140	1.15	1.06		
$D_{ar{d}}$	1302 / 1140	1.09	1.04		
E_{d_v}	1308 / 1140	1.14	1.05		
$A_{ar{u}}$ and $B_{ar{u}}$ free	1306 / 1139	1.17	1.07		
$A_{ar{u}}$ and $B_{ar{u}}$ and $B_{ar{s}}$ free	1306 / 1138	1.17	1.07		

Parameterisation study

- valence and gluon PDFs do not differ much
- low-x Dbar distribution consistent with Ubar for AUbar and BUbar free and for additional Bstr free
- strangeness ratio still consistent with unity for both

Total uncertainty dominated by parameterisation uncertainty for most of x range •

 R_{c} consistent with unity at low x •

32

CSKK: ratio $R_s = rac{s+ar{s}}{ar{d}+ar{u}}$

- R_s at x = 0.023 and Q^2 = 1.9 GeV²
 - Highest sensitivity at starting scale

 $R_s = 1.14 \pm 0.05 \text{ (experimental)} \pm 0.03 \text{ (model)} ^{+0.03}_{-0.05} \text{ (parameterisation)} ^{+0.01}_{-0.02} (\alpha_s)$

- R_s at x = 0.013 and $Q^2 = M_Z^2$
 - Maximal sensitivity for LHC data

 $R_s = 1.05 \pm 0.02 \text{ (experimental)} \stackrel{+0.02}{_{-0.01}} \text{ (model)} \stackrel{+0.02}{_{-0.01}} \text{ (parameterisation)} \pm 0.01 (\alpha_s)$

• Compared to ATLAS result at x = 0.023 and $Q^2 = 1.9 \text{ GeV}^2$

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}} = 1.13 \pm 0.05 \,(\text{exp}) \pm 0.02 \,(\text{mod}) \stackrel{+0.01}{_{-0.06}} \,(\text{par})$$

xFitter external meeting

DESY

Additional parameterisation study

- For the CSKK fit, dbar-ubar at $x \sim 0.1$ is negative, 2-3 sigma away from positive value suggested by E866 fixed-target Drell-Yan data
- Maybe if positive (dbar-ubar) imposed on the fit \rightarrow strangeness decreases \rightarrow larger dbar is correlated to smaller strangeness in the current parameterisation
 - However E866 observation made at x~0.1, whereas the LHC data have largest constraining power at x~0.01
- Cross-check made with a parameterisation which forces (dbar-ubar) to be in agreement with the E866 data
 - $R_s = 0.95 \pm 0.07$ (experimental) at x = 0.023 and $Q^2 = 1.9 \text{ GeV}^2$
 - Still consistent with unity, however \sim 2 sigma lower than central result
- not included in parameterisation variations \rightarrow not a good fit
 - X²/NDF of this fit is 1363/1141 compared to 1308/1141 for CSKK

Instead of summary: thank you for your patience :)

 \rightarrow Trying to F₁ and F₂ together gives the same conclusion

xFitter external meeting

Wichmann

07.03.18

• F2 obtained by correcting σ_{red} with predicted FL $F_2 = \sigma_{red} + y_2/Y_+ FL$

- predicted FL too small \rightarrow F2 also too small \rightarrow seen in HERAPDF2.0 F2 at low x, Q2
 - extracted F2 takes a turn over!
 - not what pQCD F2 predictions say
- HHT predictions for FL gives F2 extracted much closer to F2 predictions
- F2 predictions very similar \rightarrow they depend ONLY on very similar PDFs

Wichmann

MC tuning

- Compares well with standard Pythia Monash tune with NNPDF
 - Examples of better description for some variables

P. Gunnellini, private communication

Wichmann

Fit quality - shifts of systematic uncertainties

Adding Z off-peak data

- Not very good agreement for CMS off-peak data and ATLAS lowmass (seen in ATLAS analysis as well)
- There are larger theoretical uncertainties for off-peak mass regions coming from electroweak effects and photon induced processes
 we use only peak data for nominal CSKK fit

07.03.18

CMS Z @ 8 TeV data

	ATLAS and CMS W and all Z bi		CMS W and
	Z at 7 TeV	Z at 7 and 8 TeV	all Z bins
Total χ^2/NDF	1481/1243 = 1.19	1814/1351 = 1.34	1596/1290 = 1.24
Data set, χ^2/NDP			
HERA	1163/1056	1178/1056	1186/1056
ATLAS W ⁺	13/11	12/11	
ATLAS W ⁻	9/11	15/11	
ATLAS central CC Z	15/12	26/12	
ATLAS central CF Z	7/9	8/9	
ATLAS CC Z, $116 < M_z < 150$ GeV	8/6	7/6	
ATLAS CF Z, $116 < M_z < 150$ GeV	4/6	4/6	
ATLAS CC Z, $46 < M_z < 66$ GeV	28/6	34/6	
CMS 7 TeV W-asym.	14/11	14/11	18/11
CMS 8 TeV W^+, W^-	5/22	7/22	5/22
CMS 7 TeV Z central	12/24	13/24	16/24
CMS 7 TeV Z, $120 < M_z < 200$ GeV	31/24	28/24	25/25
CMS 7 TeV Z, $200 < M_z < 1500$ GeV	20/12	19/12	17/12
CMS 7 TeV Z, $30 < M_z < 45$ GeV	35/24	35/24	36/24
CMS 7 TeV Z, $45 < M_z < 60$ GeV	22/24	20/24	20/24
CMS 8 TeV Z central		74/24	66/24
CMS 8 TeV Z, $120 < M_z < 200$ GeV		73/24	56/24
CMS 8 TeV Z, $200 < M_z < 1500$ GeV		14/12	12/12
CMS 8 TeV Z, $30 < M_z < 45$ GeV		38/24	37/24
$CMS 8 TeV\ Z, 45 < M_z < 60\ \mathrm{GeV}$		29/24	20/24

CMS Z @ 8 TeV are not well described

- Found by NNPDF too
- some tension with ATLAS central mass & rapidity Z appears
- not well fitted even when fitted together with just HERA and other CMS data

DESY

<u></u>

Wichmann