Fits with the dipole model of DIS

Krzysztof Golec-Biernat

Institute of Nuclear Physics PAN and Rzeszów University

in collaboration with Sebastian Sapeta [arXiv:1711:11360]

×Fitter Meeting, Kraków, 5-7 March 2018

Seminal work of H1 and Zeus collaborations on inclusive DIS

ZEUS, H1 collaboration, F. D. Aaron et al., JHEP 01 (2010) 109 ZEUS, H1 collaboration, H. Abramowicz et al., Eur. Phys. J. C75 (2015) 580

Inspiring recent effort

I. Abt, A. M. Cooper-Sarkar, B. Foster, V. Myronenko, K. Wichmann and M. Wing, *Phys. Rev.* **D96** (2017) 014001, (*ACFMW*²)

My past work with distinguished collaborators

- [1.] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D59 (1998) 014017, (GBW)
- [2.] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D60 (1999) 114023
- [3.] A. M Staśto, K. Golec-Biernat and J. Kwieciński, Phys. Rev. Lett. 86 (2001) 596
- [4.] J. Bartels, K. J. Golec-Biernat and H. Kowalski, Phys. Rev. D66 (2002) 014001
- [5.] K. Golec-Biernat and S. Sapeta, Phys. Rev. D74 (2006) 054032, (GS)

글 🖌 🖌 글 🕨

- ▶ Describe transition of F_2 at HERA to small Q^2 region \rightarrow Caldwell plot
- ▶ Small x domain since $x = Q^2/W^2 \ll 1 \rightarrow \text{BFKL}$ equation
- ▶ Parton saturation in dense gluon system at small $x \rightarrow \text{GLR}$, MQ, CGC
- Saturation scale Q_s as an intrinsic scale of dense systems

Dipole picture of DIS at small x

• Structure functions $F_{T,L} \sim Q^2 \sigma_{T,L}^{\gamma p}$

$$\sigma_{T,L}^{\gamma p} = \sum_{q} \int_{0}^{1} dz \int d^{2}r \left| \Psi_{T,L}^{\gamma}(z,r,Q^{2},m_{q}) \right|^{2} \sigma_{dip}(x,r)$$

• Dipole cross section parameterization with saturation scale Q_s^2 (in GeV²)

$$\sigma_{dip}(x,r) = \sigma_0 \left\{ 1 - \exp(-r^2 Q_s^2(x)/4) \right\} \qquad Q_s^2(x) = \left(\frac{x}{x_0}\right)^{\lambda}$$

• 3 parameter fit to DIS data with $x \le 10^{-2}$

(GB and Wuesthoff, 1998)

▶ Saturation line: $Q_s^2(x) = Q^2$ in the perturbative region $Q_s > 1 \text{ GeV}$

Fit to F_2 (ACFMW²) with $x \le 10^{-2}$ and $Q^2 \le 10 \text{ GeV}^2$ (222 exp. points)

Fit	m _l	mc	m _b	σ_0/mb	λ	$x_0/10^{-4}$	$\chi^2/N_{ m df}$
GBW	0.14	-	-	23.02	0.288	3.04	2.86
GBW	0.14	1.4	—	29.12	0.277	0.41	3.78
0	0.14	_	-	23.6	0.270	2.24	1.83
1	0.14	1.4		27.3	0.248	0.42	1.60
2	0.14	1.4	4.6	27.4 ± 0.4	0.248 ± 0.002	$\textbf{0.40} \pm \textbf{0.04}$	1.61

• Fits with heavy quarks work better now! Why $Q_{max}^2 = 10 \,\mathrm{GeV}^2$?

$Q_{\rm max}^2$	N _{exp}	σ_0/mb	λ	$x_0/10^{-4}$	$\chi^2/N_{ m df}$
5	181	28.2	0.237	0.31	1.64
10	222	27.4	0.248	0.40	1.61
20	264	26.6	0.259	0.53	1.65
50	318	25.2	0.281	0.80	2.43

• Dipole cross section $\sigma_{dip}(x, r)$ from Fit 2 for $x = 10^{-6}, \dots, 10^{-2}$

Geometric scaling for massless quarks:

$$\sigma_{dip}(rQ_s(x)) \rightarrow \sigma^{\gamma p}\left(rac{Q^2}{Q_s^2(x)}
ight)$$

(Staśto, GB, Kwieciński, 2001)

DGLAP modification of GBW model

- We want to include higher Q^2 points (with $x \le 10^{-2}$).
- For dipole $r \rightarrow 0$ perturbative QCD result

$$\sigma_{dip} \approx \frac{\pi^2 r^2}{N_c} \alpha_s(\mu^2) \, xg(x,\mu^2) \qquad \qquad \mu^2 = \frac{C}{r^2}$$

Our proposal (Bartels, GB, Kowalski, Sapeta, 2002, 2006, 2017)

$$\sigma_{dip} = \sigma_0 \left\{ 1 - \exp\left(-\frac{\pi^2 r^2 \alpha_s(\mu^2) \, xg(x, \mu^2)}{3 \, \sigma_0} \right) \right\} \qquad \mu^2 = \frac{\mu_0^2}{1 - \exp(-\mu_0^2 \, r^2/\mathcal{C})}$$

- ▶ For $r \rightarrow 0$ pQCD result and for $r \rightarrow \infty$ GBW model
 - $\sigma_{dip} = \sigma_0 \left\{ 1 \exp(-r^2 Q_s^2(x)/4) \right\} \qquad \qquad Q_s^2(x) = \frac{4\pi^2}{3\sigma_0} \alpha_s(\mu_0^2) xg(x,\mu_0^2)$
- Gluon distribution at the scale μ_0^2 gives saturation scale!

∃ ► < ∃ ► ...</p>

Fits with DGLAP improved model

▶ 5 parameter fit: σ_0, μ_0^2, C , and in the initial gluon for DGLAP evolution

$$xg(x, Q_0 = 1 \,\text{GeV}) = A_g \, x^{-\lambda_g} (1-x)^{5.6}$$

▶ 387 experimental points with $x \le 10^{-2}$ and $Q^2 \le 650 \, {\rm GeV^2}$

Fit	m _b	σ_0/mb	Ag	λ_g	С	$\mu_0^2/{ m GeV^2}$	$\chi^2/N_{\rm df}$
GS	-	22.4	1.35	0.08	0.38	1.73	2.02
GS	4.6	22.7	1.23	0.08	0.35	1.60	2.43
1	—	22.6	1.18	0.11	0.29	1.85	1.40
2	4.6	22.9	1.07	0.11	0.27	1.74	1.51

GS=(GB and Sapeta, 2006)

< 3 >

Dipole cross section comparison

• GBW versus DGLAP dipole cross sections for $x = 10^{-6}, \ldots, 10^{-2}$

• Geometric scaling for $rQ_s > 1$

Data comparison - F_2 from fits

Krzysztof Golec-Biernat Fits with the dipole model of DIS

Data comparison - $F_2^{c,b}$ as the prediction

Hera data for F^c₂

Hera data for F₂^b

Structure function F₁

Saturation scale

- > After 20 years the GBW model with parton saturation ideas is still alive!
- DGLAP improved model provides robust picture of DIS at small x
- Huge theoretical work done in these years on parton saturation
 - Color Glass Condensate L. McLerran, R. Venugopalan,.....
 - QCD color dipoles A.H. Mueller, Yu. Kovchegov,...
 - QCD shock waves I. Balitsky,...
 - NLO high energy QCD corrections L.N. Lipatov, V. Fadin,....

∃ ≥ >

Backup

æ

< E > < E >

Krzysztof Golec-Biernat Fits with the dipole model of DIS

Saturation of F_L

э