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Color dipole/ k, -factorization approach
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Color dipole representation of forward amplitude:
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@ impact parameters and helicities of high-energy g and g are conserved during the interaction.

@ scattering matrix is “diagonal” in the color dipole representation.



When do small dipoles dominate ?

o the photon shrinks with Q2 - photon wavefunction at large r:
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o the integrand receives its main contribution from
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a large quark mass (bottom, charm) can be a hard scale even at Q% = 0.

for small dipoles we can approximate
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for £ > 1 we then obtain the asymptotics
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probes the gluon distribution, which drives the energy dependence.

From DGLAP fits: xg(x, 12) = (1/x)*(#) with A(42) ~ 0.1+ 0.4 for yi2 = 1+ 102GeV2.



Diffractive processes on the nuclear target
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diffractive processes on nuclear targets:
@ coherent diffraction — nucleus stays in the ground state
@ complete breakup of the nucleus, final state free protons & neutrons
@ intact nucleus, but an excited state

@ partial breakup of the nucleus, a variety of possible fragments

they all have in common:
o large rapidity gap between vector meson and nuclear fragments

@ lack of production of additional particles

See e.g. A. Caldwell and H. Kowalski, Phys. Rev. C 81 (2010) for prospects at an electron-ion
collider



Off-forward amplitude

Amplitude at finite transverse momentum transfer A
A(v*Ai — VAL W, A) = 2i /dzBeXP[_iAB]<V|<A;|IA_(b+7b—)‘Ai)|"/>

1
=2 /dzBexp[—iAB]/ dz/d2r\llf/(z, V. (z,r)(AF|F(B — (1 — 2)r, B + zr)|A)).
0

B:zb++(1—z)b_:b—(1—22)£

A(Y A — VAE, W, A) = 2i/d2bexp[—ibA]/d2rpv7(r,A)(A;:|f(b+%,b— £)|A,»),

! riA
pv~(r,A) = / dzexpli(1 — 22)?]\IJT/(Z, Wy (z,r).
0




Incoherent diffraction: summing over nuclear states
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Closure in the sum over nuclear final states:
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Only ground state nuclear averages:
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Nuclear averages as in Glauber & Matthiae
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in the limit of the dilute uncorrelated nucleus all we need are:
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Multiple scattering expansion of the incoherent cross section
Diffraction cone of the free nucleon: B < Rf‘
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Multiple scattering expansion for A? Rf‘ >1
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nuclear absorption




Dipole cross section from Xfitter

BGK-form of the dipole cross section
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o the soft ansatz, as used in the original BGK model
xg(x, ug) = Agxfké’(l — x)Cg7
@ the soft + hard ansatz

xg(x, u3) = Agx8(1 — x)% (1 + Dgx + Egx?),

o fit I: BGK fit with fitted valence quarks for o, for HIZEUS-NC data in the range
@% > 3.5 GeV? and x < 0.01. NLO fit. Soft gluon.

o fit Il: BGK fit with valence quarks for o, for HLZEUS-NC data in the range Q2 > 0.35 GeV2
and x < 0.01. NLO fit. Soft + hard gluon.

o fits from A. tuszczak and H. Kowalski, Phys. Rev. D 95 (2017).




Further input to our calculation

Overlap of light-cone wave functions
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@ “boosted Gaussian” wave functions as in Nemchik et al. ('94)
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@ parameters mq, R & normalization as in Kowalski et al. (2006) for J/1 and Cox et al. (2008)
for T.

v

diffractive slope on a free nucleon:

B = By + 4o/ log(W/Wp) with Wy = 90 GeV, and o’ = 0.164 GeV 2
We take By = 4.88 GeV 2 for J/+ and By = 3.68 GeV~2 for T.




Diffractive incoherent photoproduction on the nuclear target
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Diffractive incoherent photoproduction on the nuclear target
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Diffractive incoherent photoproduction on

do/dt [ub/GeV?]
3

o
&

107°

-10
10 0

4

(a) W=30 GeV,2*Pb,

~
~
~

\\
TR IR RN I SR |

R A

--n=1

—n=2

1 2 3 4
-t [GeV?]

the nuclear target

R Y SR UL Ll B B

(b) W=100 GeV,?®Pb, Y

d

--n=1

—n=2

~n=3

o berwd vl vl vl vl vl d vl ol il

1

2

3
-t [GeVd]

5



Diffractive incoherent photoproduction on the nuclear target
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Incoherent difffraction at low A?

at low A? the single scattering dominates, and one should rather use its exact form:

do:
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vanishes for A2 R2A >1
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nuclear absorption

If we were to neglect intranuclear absorption, we would obtain for small AZ:
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Diffractive processes on the nuclear target
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@ solid line: exact single scattering
o dashed: large |t|-limit of single scattering

@ exact result merges into the large [t| limit
quickly, the latter is a good approximation in
a broad range of t.

do/dt [mb/GeV?]
P

@ cross section dips, but does not vanish at

t— 0.
0.5 @ note: in the small to intermediate t region

nuclear correlations may play a role.
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Diffractive processes on the nuclear target
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Corrections for real part and skewedness

numerically important corrections:

o real part of the diffractive amplitude:

dlog (<vwa(x, r)lw))
Olog(1/x)

o amplitude is non-forward also in the longitudinal momenta. Correction factor (Shuvaev et al.
(1999)):

o(x,r) = (1 —ip(x))o(x,r), p(x) = tan (%) ,Ap =

- _ 228p43 [(Ap +5/2)
skewed = ﬁ r(Ap +4) o

o apply K-factor to the cross section:

K= (1 + pZ(X)) ) Rszkewed .

Note: absorption factor is really:
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so that we neglect a real part in the absorption exponentials




Incoherent diffraction in ultraperipheral heavy ion collisions
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Cross section for AA collision uses Weizsacker-Williams photon fluxes:
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From ultraperipheral to peripheral nuclear collisions

Recently, the ALICE collaboration has observed a large enhancement of J/1) mesons carrying very
small pr < 300 MeV in the centrality classes corresponding to peripheral collisions.

Centrality class 70 +— 90%:
13fm < b < 15fm, photon fluxes by Contreras Phys. Rev. C 96 (2017)

doineon(AA = VX|70 = 90%)
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cut
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The ALICE measurement is [Phys. Rev. Lett. 116 (2016)]:

do(AA — VX|70 = 90%; 2.5 < |y| < 4.0)
dy

=59+ 114+8pub.

For an estimate of the coherent contribution, see: M. Ktusek-Gawenda and A. Szczurek, Phys.
Rev. C 93 (2016)



Conclusions

@ we have presented the Glauber-Gribov theory for incoherent photoproduction of vector mesons
on heavy nuclei within the color dipole approach.

@ We have developed the multiple scattering expansion which involves matrix elements of the
operator o"(x, r) exp[f%o(x, r)Ta(b)]. We performed calculations for J/¢ and T
photoproduction. Multiple scatterings lead to extended tails in the t-distributions.

@ multiple scattering terms are only important at large t, beyond the free-nucleon diffraction
cone.

@ We use the dipole cross section obtained in the Xfitter framework. Our calculations are in
agreement with data from ALICE in ultraperipheral lead-lead collisions at /sy = 2.76 TeV.

o Incoherent diffractive production also contributes to the J/v yield in peripheral inelastic
heavy-ion collisions. Rough estimates using photon fluxes of Contreras give about ~ 25% of
the cross section measured by ALICE.

o In the future: extension to light vector mesons, as well as to finite Q? (electron-ion collider).
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