Charmonia production and gluon distribution in the proton

Anna Cisek

University of Rzeszow

xFitter Krakow, 4-7 March 2018

Charmonia production and gluon distribution in the proton

Outline

- 1 Exclusive production of J/ψ meson
 - Photoproduction in γp collisions
 - Photoproduction in pp and $p\bar{p}$ collisions
- 2 Semiexclusive production of J/ψ meson
 - Diffractive photoproduction with electromagnetic dissociation
 - Diffractive resonance excitation
 - Diffractive partonic excitation
- 3 Inclusive production
 - J/Ψ production
 - J/Ψ production from radiative decay of χ_c mesons
- 4 Conclusions

• Anna Cisek, Wolfgang Schäfer, Antoni Szczurek

Diagram for exclusive photoproduction $\gamma p \rightarrow J/\Psi p$

ψ_v(z, k²) → wave function of the vector meson
 F(x, κ²) → unintegrated gluon distribution function
 x ~ (Q² + M²_{I/Ψ})/W²

The production amplitude for $\gamma p \rightarrow J/\Psi p$

The full amplitude:

$$\mathcal{M}_T(W,\Delta^2) = (i+\rho_T) \Im m \mathcal{M}_T(W,\Delta^2 = 0, Q^2 = 0) \exp(-\frac{B(W)\Delta^2}{2})$$

The imaginary part of the amplitude can be written as:

$$\Im m \mathcal{M}_{\mathcal{T}}(W, \Delta^{2} = 0, Q^{2} = 0) = W^{2} \frac{c_{v} \sqrt{4\pi\alpha_{em}}}{4\pi^{2}} \int_{0}^{1} \frac{dz}{z(1-z)} \int_{0}^{\infty} \pi dk^{2} \psi_{V}(z, k^{2})$$
$$\int_{0}^{\infty} \frac{\pi d\kappa^{2}}{\kappa^{4}} \alpha_{s}(q^{2}) \mathcal{F}(x_{eff}, \kappa^{2}) \left(A_{0}(z, k^{2}) W_{0}(k^{2}, \kappa^{2}) + A_{1}(z, k^{2}) W_{1}(k^{2}, \kappa^{2})\right)$$

 Real part
 S

 $\rho_T = \frac{\Re e \mathcal{M}_T}{\Im m \mathcal{M}_T} = \frac{\pi}{2} \Delta_{\mathbf{P}}$

Slope parameter

$$B(W) = B_0 + 2lpha_{e\!f\!f}^\prime \log\left(rac{W^2}{W_0^2}
ight)$$

Total cross section for $\gamma p \rightarrow J/\Psi(\Psi') p$

Total cross section can be written as:

$$\sigma_T(\gamma p \to J/\Psi p) = \frac{1 + \rho_T^2}{16\pi B(W)} \left| \frac{\Im m \mathcal{M}_T(W, \Delta^2 = 0, Q^2 = 0)}{W^2} \right|^2$$

HERA data and extracted LHCb data

- H1 Collaboration, Phys. Lett. B541 (2002) 251
- H1 Collaboration, Eur. Phys. J. C46 (2006) 585
- H1 Collaboration, Eur. Phys. J. C73 (2013) 2466

Exclusive production of J/ψ meson

ANNA CISEK

Diagram for exclusive production of $J/\Psi(\Psi')$ **meson in proton-proton collisions**

Charmonia production and gluon distribution in the proton

Amplitude for process $pp \rightarrow p J/\Psi p$

Full applitude for
$$pp \longrightarrow pVp$$

$$M(\boldsymbol{p}_1, \boldsymbol{p}_2) = \int \frac{d^2 \boldsymbol{k}}{(2\pi)^2} S_{el}(\boldsymbol{k}) M^{(0)}(\boldsymbol{p}_1 - \boldsymbol{k}, \boldsymbol{p}_2 + \boldsymbol{k})$$
$$= M^{(0)}(\boldsymbol{p}_1, \boldsymbol{p}_2) - \delta M(\boldsymbol{p}_1, \boldsymbol{p}_2)$$

Amplitude without absorption

$$M^{(0)}(p_1, p_2) = e_1 \frac{2}{z_1} \frac{p_1}{t_1} \mathcal{F}_{\lambda_1' \lambda_1}(p_1, t_1) \mathcal{M}_{\gamma h_2 \to V h_2}(s_2, t_2, Q_1^2) + e_2 \frac{2}{z_2} \frac{p_2}{t_2} \mathcal{F}_{\lambda_2' \lambda_2}(p_2, t_2) \mathcal{M}_{\gamma h_1 \to V h_1}(s_1, t_1, Q_2^2)$$

Absorptive corrections for the amplitude

$$\delta \mathbf{M}(\mathbf{p}_1, \mathbf{p}_2) = \int \frac{d^2 \mathbf{k}}{2(2\pi)^2} T(\mathbf{k}) \, \mathbf{M}^{(0)}(\mathbf{p}_1 - \mathbf{k}, \mathbf{p}_2 + \mathbf{k})$$

Rapidity distribution

- R. Aaij et al. (LHCb collaboration), J. Phys. G40 (2013) 045001
- R. Aaij et al. (LHCb collaboration), arXiv:1401.3288 [hep-ex]
- At large *p_t* we get an enhancement factor of the cross section of order of 10
- Absorption must be included

Diagrams representation of the electromagnetic excitation

- The schematic diagrams representation of the electromagnetic excitation of one (left panel) or second (right panel) photon
- Anna Cisek, Wolfgang Schäfer, Antoni Szczurek Phys. Let. B769 (2017) 176

Difractive resonance with strong disociation

- low p_T → Dissociation into nucleon resonances/low mass continuum states. Dominated by N*(1680), J^P = ⁵/₂⁺, N*(2220), J^P = ⁹/₂⁺, N*(2700), J^P = ¹³/₂⁺.
 A model by L.L. Jenkovszky, O.E. Kuprash, J.W. Lämsa, V.K. Magas and R. Orava (2011).
- large $p_T \rightarrow$ Incoherent diffractive photoproduction of J/ψ off partons. Large diffractive masses are possible here.

Difractive partonic with strong disociation

• dissociative production of vector mesons at large p_T probes the perturbative QCD Pomeron. (Ryskin, Forshaw et al.). An alternative to the "jet - gap - jet" type of processes.

Results

 Anna Cisek, Wolfgang Schäfer, Antoni Szczurek Phys. Let. B769 (2017) 176

Ratio of dissociative to exclusive cross section

• Anna Cisek, Wolfgang Schäfer, Antoni Szczurek Phys. Let. **B769** (2017) 176

ANNA CISEK

The main color-singlet mechanism of production of J/Ψ meson

- We restrict to gluon-gluon fusion mechanism (high energy)
- We use unintegrated gluon distribution from the KMR (Durham group) and KS (Kutak-Staśto)

Differential cross section for J/Ψ

• The differential cross section in the *k*_t factorization can be writen as:

$$\frac{d\sigma(pp \to J/\psi gX)}{dy_{J/\psi} dy_g d^2 p_{J/\psi,t} d^2 p_{g,t}} = \frac{1}{16\pi^2 \hat{s}^2} \int \frac{d^2 q_{1t}}{\pi} \frac{d^2 q_{2t}}{\pi} \overline{|\mathcal{M}_{\mathbf{g}^*\mathbf{g}^* \to \mathbf{Vg}}|^2} \times \delta^2 \left(\mathbf{q_{1t}} + \mathbf{q_{2t}} - \mathbf{p_{V,t}} - \mathbf{p_{g,t}}\right) \mathcal{F}_{\mathbf{g}}(\mathbf{x_1}, \mathbf{q_{1t}^2}, \mu_{\mathbf{F}}^2) \mathcal{F}_{\mathbf{g}}(\mathbf{x_2}, \mathbf{q_{2t}^2}, \mu_{\mathbf{F}}^2)$$

- We calculate the dominant color-single *gg* → *Vg* contribution taking into account transverse momenta of initial gluons
- The corresponding matrix element squared for the $gg \rightarrow Vg$ is

 $|\mathcal{M}_{gg \rightarrow Vg}|^2 \propto \alpha_s^3 |\mathbf{R}(\mathbf{0})|^2$

• Anna Cisek and Antoni Szczurek - Phys. Rev. D97 (2018) 034035

χ_c production

* In the k_t -factorization approach the leading-order **cross section** for the χ_c meson production can be written as:

$$\sigma_{\mathbf{pp}\to\chi_{\mathbf{c}}} = \int \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{d^2 q_{1t}}{\pi} \frac{d^2 q_{2t}}{\pi} \,\delta\left((q_1 + q_2)^2 - M_{\chi_c}^2\right) \sigma_{gg\to\chi_c}(x_1, x_2, q_1, q_2) \\ \times \mathcal{F}_{\mathbf{g}}(\mathbf{x}_1, \mathbf{q}_{1t}^2, \mu_{\mathbf{F}}^2) \mathcal{F}_{\mathbf{g}}(\mathbf{x}_2, \mathbf{q}_{2t}^2, \mu_{\mathbf{F}}^2)$$

* The matrix element squared for the $gg \rightarrow \chi_c$ subprocess is

 $|\mathcal{M}_{gg \rightarrow \chi_c}|^2 \propto \alpha_s^2 |\mathbf{R}'(\mathbf{0})|^2$

* For running coupling constants we choose:

 $\alpha_s^2 \to \alpha_s(\mu_1^2)\alpha_s(\mu_2^2)$

where $\mu_1^2 = \max(\mathbf{q}_{1t}^2, \mathbf{m}_t^2)$ and $\mu_2^2 = \max(\mathbf{q}_{2t}^2, \mathbf{m}_t^2)$

Cross section for χ_c

• After some manipulation:

$$\sigma_{\mathbf{pp}\to\chi_{\mathbf{c}}} = \int dy d^2 p_t d^2 q_t \frac{1}{s\mathbf{x}_1\mathbf{x}_2} \frac{1}{m_{t,\chi_c}^2} \overline{|\mathcal{M}_{\mathbf{g}^*\mathbf{g}^*\to\chi_{\mathbf{c}}}|^2} \mathcal{F}_{\mathbf{g}}(\mathbf{x}_1, \mathbf{q}_{1t}^2, \mu_{\mathbf{F}}^2) \mathcal{F}_{\mathbf{g}}(\mathbf{x}_2, \mathbf{q}_{2t}^2, \mu_{\mathbf{F}}^2) / 4$$

- Which can be also used to calculate rapidity and transverse momentum distribution of the χ_c mesons
- In the last equation:

$$\begin{aligned} p_t &= q_{1t} + q_{2t} \qquad q_t = q_{1t} - q_{2t} \\ x_1 &= \frac{m_{t,\chi_c}}{\sqrt{s}} \exp(y) \qquad x_2 = \frac{m_{t,\chi_c}}{\sqrt{s}} \exp(-y) \end{aligned}$$

 $\bullet\,$ The factor $\frac{1}{4}$ is the jacobian of transformation from (q_{1t},q_{2t}) to (p_t,q_t) variables

α_s - scale

For running coupling constants we choose different scale:

•
$$\chi_c$$

 $\alpha_s^2 \to \alpha_s(\mu_1^2)\alpha_s(\mu_2^2)$

- $\mu_1^2 = q_{1t}^2$ • $\mu_2^2 = q_{2t}^2$
- 2 prescription 2
 - $\mu_1^2 = \max(q_{1t}^2, m_t^2)$ • $\mu_2^2 = \max(q_{2t}^2, m_t^2)$

• J/Ψ $\alpha_s^3 \rightarrow \alpha_s(\mu_1^2)\alpha_s(\mu_2^2)\alpha_s(\mu_3^2)$

• prescription 1 • $\mu_1^2 = q_{1t}^2$ • $\mu_2^2 = q_{2t}^2$ • $\mu_3^2 = m_t^2$

• prescription 2 • $\mu_1^2 = \max(q_{1t}^2, m_t^2)$ • $\mu_2^2 = \max(q_{2t}^2, m_t^2)$ • $\mu_3^2 = m_t^2$

ANNA CISEK

rapidity dependence for J/Ψ meson (direct)

- 2,76 TeV B. Abelev et al.; Phys. Let. B. 718 (2012) 295-306
- 7 TeV B. Abelev et al.; Eur.Phys. J. C. 74 (2014) 2974
 7 TeV - K. Aamodt et al.; Phys. Let. B. 704 (2011) 442
 7 TeV - R. Aaij et al.; Eur.Phys. J. C. 71 (2011) 1645
- 13 TeV R. Aaij et al.; JHEP 1510 (2015) 172

ANNA CISEK

rapidity distribution J/Ψ from χ_c decays

ANNA CISEK

rapidity distribution J/Ψ from χ_c decays

p_t distribution for χ_c meson

rapidity dependence

- Better solution is to take prescription 2 for α_s scale
- The best solution is to take KMR UGDF for J/ψ and ψ' mesons and mixed UGDfs for χ_c mesons
- Anna Cisek and Antoni Szczurek Phys. Rev. D97 (2018) 034035

ANNA CISEK

Conclusions

- We have compared our results with **HERA** $(\gamma p \longrightarrow J/\Psi(\Psi') p)$ and **LHCb** $(pp \longrightarrow p J/\Psi p)$ data.
- $d\sigma/dp_t$ is interesting (spin flip, Pomeron-Odderon fusion) but difficult to measure.
- Absorptive corrections have been included.
- In γ-Pomeron fusion reactions in proton-proton scattering, electromagnetic dissociation is of the same size as strong, diffractive dissociation. It even dominates in some regions of the phase space.
- Electromagnetic dissociation is calculable from *F*₂ data. **Resonance excitation is important at low excited masses**.

Conclusions

- Diffractive dissociation requires modelling, there is only little data to constrain it. The resonance contribution is concentrated at very small *t*, similar to the coherent elastic contribution
- We have calculated the color-singlet contribution in the NRQCD *k*_t-factorization
- We have compared our results with ALICE and LHCb data for J/Ψ and ATLAS for χ_{c1} and χ_{c2}
- Our results in rapidity are consistent with experimental data for KMR UGDF and better when nonlinear effects are included
- Data at 13 TeV may require saturation effects in the small-x gluon

Backup

ANNA CISEK

Helicity conserving and helicity flip amplitudes

The full amplitude for the $pp \rightarrow pVp$ process can be written as

$$\mathcal{M}_{h_{1}h_{2} \to h_{1}h_{2}V}^{\lambda_{1}\lambda_{2} \to \lambda_{1}'\lambda_{2}'\nu}(s,s_{1},s_{2},t_{1},t_{2}) = \mathcal{M}_{\gamma}\mathbf{P} + \mathcal{M}_{\mathbf{P}\gamma}$$

$$= \langle p_{1}',\lambda_{1}'|J_{\mu}|p_{1},\lambda_{1}\rangle\epsilon_{\mu}^{*}(q_{1},\lambda_{V})\frac{\sqrt{4\pi\alpha_{em}}}{t_{1}}\mathcal{M}_{\gamma^{*}h_{2} \to Vh_{2}}^{\lambda_{\gamma}*\lambda_{2} \to \lambda_{V}\lambda_{2}}(s_{2},t_{2},Q_{1}^{2})$$

$$+ \langle p_{2}',\lambda_{2}'|J_{\mu}|p_{2},\lambda_{2}\rangle\epsilon_{\mu}^{*}(q_{2},\lambda_{V})\frac{\sqrt{4\pi\alpha_{em}}}{t_{2}}\mathcal{M}_{\gamma^{*}h_{1} \to Vh_{1}}^{\lambda_{\gamma}*\lambda_{1} \to \lambda_{V}\lambda_{1}}(s_{1},t_{1},Q_{2}^{2})$$

Simple structure:

$$egin{aligned} & \langle p_1',\lambda_1'|J_\mu|p_1,\lambda_1
angle\epsilon_\mu^*(q_1,\lambda_V) = rac{(oldsymbol{e}^{(\lambda_V)}oldsymbol{q}_1)}{\sqrt{1-z_1}} rac{2}{z_1}\cdot \ & \cdot\chi_{\lambda\prime}^\dagger \Big\{F_1(Q_1^2) - rac{i\kappa_p F_2(Q_1^2)}{2m_p}(oldsymbol{\sigma}_1\cdot[oldsymbol{q}_1,oldsymbol{n}])\Big\}\chi_\lambda \end{aligned}$$

• The coupling with F_1 - proton helicity conserving, F_2 - proton helicity flip

ANNA CISEK

Diffractive production with electromagnetic dissociation

The cross section for such proces can be written as:

$$\frac{d\sigma(pp \to XVp;s)}{dyd^2\boldsymbol{p}} = \int \frac{d^2\boldsymbol{q}}{\pi \boldsymbol{q}^2} \mathcal{F}_{\gamma/p}^{(\mathrm{in})}(z_+, \boldsymbol{q}^2) \frac{1}{\pi} \frac{d\sigma^{\gamma^* p \to Vp}}{dt} (z_+s, t = -(\boldsymbol{q} - \boldsymbol{p})^2) + (z_+ \leftrightarrow z_-)$$

$$z_{\pm} = e^{\pm y} \sqrt{p^2 + m_V^2 / \sqrt{s}}$$

Structure function of proton

$$\mathcal{F}_{\gamma/p}^{(\text{inel})}(z, \boldsymbol{q}^2, M_X^2) = \frac{\alpha_{\text{em}}}{\pi} (1 - z) \theta(M_X^2 - M_{\text{thr}}^2) \frac{F_2(x_{Bj}, Q^2)}{M_X^2 + Q^2 - m_p^2} \cdot \left[\frac{\boldsymbol{q}^2}{\boldsymbol{q}^2 + z(M_X^2 - m_p^2) + z^2 m_p^2} \right]^2$$

$$Q^{2} = \frac{1}{1-z} \Big[q^{2} + z(M_{X}^{2} - m_{p}^{2}) + z^{2}m_{p}^{2} \Big], x_{Bj} = \frac{Q^{2}}{Q^{2} + M_{X}^{2} - m_{p}^{2}}$$

Charmonia production and gluon distribution in the proton

Difractive resonance with strong disociation

The large gap is proided by te Pomeron exchange, and we write the cross secion in such way:

$$\frac{d\sigma(\gamma p \to VX)}{dt dM_X^2} = \left(\frac{s_{\gamma p}}{M_X^2}\right)^{2\alpha_{\mathbf{P}}^{\text{eff}}(t)-2} \cdot A_0 f_{\gamma \to V}^2(t) \cdot F(M_X^2, t)$$

The function $f_{\gamma \to V}(t) = \exp[B_{\gamma \to V}t/2]$ is a formfactor of the $\gamma \to V$ transition, while $F(M_X^2, t)$ contains the information on the dynamics of the diffractive dissociation.

$$F(M_X^2,t) = \frac{x(1-x)^2}{(M_X^2 - m_p^2)(1+\tau)^{3/2}} \Big(\Im mA(M_X^2,t) + A_{\text{Roper}}(M_X^2,t)\Big)$$

$$x = rac{|t|}{M_X^2 + |t|}, \ au = rac{4m_p^2 x^2}{|t|}$$

ANNA CISEK

Difractive resonance with strong disociation

Explicitly, they contribute to the $p\mathbf{P} \rightarrow X$ amplitude as:

$$\Im mA(M_X^2, t) = \sum_{n=1,3} [f(t)]^{2(n+1)} \cdot \frac{\Im m \,\alpha(M_X^2)}{(J_n - \Re e \,\alpha(M_X^2))^2 + (\Im m \,\alpha(M_X^2))^2}$$

We can now compute the contribution from diffractive excitation of small masses from the formula

$$\frac{d\sigma(pp \to XVp;s)}{dyd^2 \boldsymbol{p} dM_X^2} = \int \frac{d^2 \boldsymbol{q}}{\pi \boldsymbol{q}^2} \mathcal{F}_{\gamma/p}^{(\text{el})}(z_+, \boldsymbol{q}^2) \frac{1}{\pi} \frac{d\sigma(\gamma p \to VX)}{dt dM_X^2}(z_+s) + (z_+ \leftrightarrow z_-)$$

$$\mathcal{F}_{\gamma/p}^{(\mathrm{el})}(z,\boldsymbol{q}^2) = \frac{\alpha_{\mathrm{em}}}{\pi} (1-z) \left[\frac{\boldsymbol{q}^2}{\boldsymbol{q}^2 + z^2 m_p^2} \right]^2 \frac{4m_p^2 G_E^2(Q^2) + Q^2 G_M^2(Q^2)}{4m_p^2 + Q^2}$$

$$Q^2 = \frac{q^2 + z^2 m_p^2}{1 - z}$$

Charmonia production and gluon distribution in the proton

ANNA CISEK

Difractive partonic with strong disociation

Cross section

$$\frac{d\sigma_{pp \to Vj}^{diff, partonic}}{dy_V dy_j d^2 p_t} = \frac{1}{\pi} x_1 q_{\text{eff}}(x_1, \mu_F^2) x_2 \gamma_{el}(x_2) \frac{d\sigma(\gamma q \to Vq)}{dt} + (x_1 \leftrightarrow x_2)$$

$$q_{\rm eff}(x,\mu_F^2) = \frac{81}{16}g(x,\mu_F^2) + \sum_f \left[q_f(x,\mu_F^2) + \bar{q}_f(x,\mu_F^2)\right]$$

Factorization scale: $\mu_F^2 = m_V^2 + |\hat{t}|$

Simple formula for Pomeron-exchange

$$rac{d\sigma_{\gamma q
ightarrow Vq}}{d\hat{t}} \propto lpha_s^2 (ar{Q}_t^2) lpha_s^2 (|\hat{t}|) rac{m_V^3 \Gamma (V
ightarrow l^+ l^-)}{(ar{Q}_t^2)^4}$$

 $\bar{Q}_t^2 = m_V^2 + |\hat{t}|$

ANNA CISEK

Matrix elements for J/Ψ (Ψ')

 $\mathcal{M}_{\mathbf{a}}(\mathbf{gg} \to \mathbf{J}/\psi \mathbf{g}) = tr\{\epsilon_{\mathbf{1}}(\mathbf{p_{c}} - \mathbf{k_{1}} + m_{c})\epsilon_{\mathbf{2}} \times (-\mathbf{p_{c}} - \mathbf{k_{3}} + m_{c})\epsilon_{\mathbf{3}}J(S,L)\}C_{\Psi} \\ \times tr\{T^{a}T^{b}T^{c}T^{d}\}[k_{1}^{2} - 2(p_{c}k_{1})]^{-1} \times [k_{3}^{2} - 2(p_{\bar{c}}k_{3})]^{-1} + 5 \text{ permutations}$

S. P. Baranov, Phys. Rev. D 66 (2002) 114003

ANNA CISEK

Matrix elements for $J/\Psi(\Psi')$

$$\begin{split} \mathcal{M}_{\mathbf{b}}(\mathbf{g}\mathbf{g}\rightarrow\mathbf{J}/\psi\mathbf{g}) &= tr\{\gamma_{\mu}(p_{\overline{c}}-k_{3}+m_{c})\epsilon_{3}J(S,L)\}\\ \times G^{3}(k_{1},\epsilon_{1},k_{2},\epsilon_{2},-k,\mu)C_{\Psi}f^{abe}\\ &\times tr\{T^{e}T^{c}T^{d}\}[k^{2}]^{-1}\\ \times [k_{3}^{2}-2(p_{\overline{c}}k_{3})]^{-1}+5 \ permutations \end{split}$$

$$\mathcal{M}_{\mathbf{c}}(\mathbf{g}\mathbf{g} \to \mathbf{J}/\psi\mathbf{g}) = tr\{\gamma_{\mu}J(S,L)\}G^{3}(k_{1},\epsilon_{1},k_{2},\epsilon_{2},-k,\mu)$$
$$\times G^{3}(-k_{3},-\epsilon_{3},-p_{\Psi},-\epsilon_{-},-k,\nu)C_{\Psi}f^{abe}f^{cfe}$$
$$\times tr\{T^{f}T^{d}\}[k^{2}]^{-1}\times[m_{\Psi}^{2}]^{-1}+2 \text{ permutations}$$

$$\mathcal{M}_{\mathbf{d}}(\mathbf{g}\mathbf{g}\to\mathbf{J}/\psi\mathbf{g}) = tr\{\gamma_{\nu}J(S,L)\}G^{(4)A,B,C}(\epsilon_{1},\epsilon_{2},\epsilon_{3},\nu)C_{\Psi} \\ \times tr\{T^{f}T^{d}\}[k^{2}]^{-1}[m_{\Psi}^{2}]^{-1}$$

S. P. Baranov, Phys. Rev. D 66 (2002) 114003

Matrix elements for χ_c

$$\begin{aligned} \overline{\frac{|\mathcal{A}(g^{\star} + g^{\star} \to \mathcal{H}[{}^{3}P_{0}^{(1)}]|^{2}}_{|\mathcal{A}(g^{\star} + g^{\star} \to \mathcal{H}[{}^{3}P_{1}^{(1)}]|^{2}} &= \frac{8}{3}\pi^{2}\alpha_{s}^{2}\frac{\langle \mathcal{O}^{\mathcal{H}}[{}^{3}P_{0}^{(1)}]\rangle}{M^{5}}\mathbf{F}^{[{}^{3}P_{0}]}(\mathbf{t}_{1}, \mathbf{t}_{2}, \varphi) \\ \overline{|\mathcal{A}(g^{\star} + g^{\star} \to \mathcal{H}[{}^{3}P_{1}^{(1)}]|^{2}}_{|\mathcal{A}(g^{\star} + g^{\star} \to \mathcal{H}[{}^{3}P_{1}^{(1)}]|^{2}} &= \frac{16}{3}\pi^{2}\alpha_{s}^{2}\frac{\langle \mathcal{O}^{\mathcal{H}}[{}^{3}P_{1}^{(1)}]\rangle}{M^{5}}\mathbf{F}^{[{}^{3}P_{1}]}(\mathbf{t}_{1}, \mathbf{t}_{2}, \varphi) \\ \overline{|\mathcal{A}(g^{\star} + g^{\star} \to \mathcal{H}[{}^{3}P_{2}^{(1)}]|^{2}}_{|\mathcal{A}(g^{\star} + g^{\star} \to \mathcal{H}[{}^{3}P_{2}^{(1)}]|^{2}} &= \frac{32}{45}\pi^{2}\alpha_{s}^{2}\frac{\langle \mathcal{O}^{\mathcal{H}}[{}^{3}P_{2}^{(1)}]\rangle}{M^{5}}\mathbf{F}^{[{}^{3}P_{2}]}(\mathbf{t}_{1}, \mathbf{t}_{2}, \varphi) \end{aligned}$$

where

$$\langle {\cal O}^{\chi_{cJ}}[{}^3P^{(1)}_J]\rangle = 2N_c(2J+1)|R'(0)|^2$$

B. A. Kniehl, D. V. Vasin, V. A. Saleev; Phys. Rev. D 73 (2006) 074022

Matrix elements for χ_c

$$\mathbf{F}^{[^{3}\mathbf{P}_{0}]}(\mathbf{t}_{1},\mathbf{t}_{2},\varphi) = \frac{2}{9} \frac{M^{2} \left(M^{2} + |\mathbf{p}_{t}|^{2}\right)^{2} \left[(3M^{2} + t_{1} + t_{2})\cos\varphi + 2\sqrt{t_{1}t_{2}}\right]^{2}}{(M^{2} + t_{1} + t_{2})^{4}}$$

$$\mathbf{F}^{[^{3}\mathbf{P}_{1}]}(\mathbf{t}_{1},\mathbf{t}_{2},\varphi) = \frac{2}{9} \frac{M^{2} \left(M^{2} + |\mathbf{p}_{t}|^{2}\right)^{2} \left[(t_{1} + t_{2})^{2} \sin^{2} \varphi + M^{2} \left(t_{1} + t_{2} - 2\sqrt{t_{1}t_{2}} \cos \varphi\right)\right]}{(M^{2} + t_{1} + t_{2})^{4}}$$

$$\mathbf{F}^{[^{3}\mathbf{P}_{2}]}(\mathbf{t}_{1},\mathbf{t}_{2},\varphi) = \frac{1}{3} \frac{M^{2}}{(M^{2}+t_{1}+t_{2})^{4}} (M^{2}+|\mathbf{p}_{t}|^{2})^{2} \{3M^{4}+3M^{2}(t_{1}+t_{2})+4t_{1}t_{2} +(t_{1}+t_{2})^{2}\cos^{2}\varphi+2\sqrt{t_{1}t_{2}}[3M^{2}+2(t_{1}+t_{2})]\cos\varphi\}$$

where $\mathbf{p}_t = \mathbf{q}_{1t} + \mathbf{q}_{2t}$ and $\varphi = \varphi_1 - \varphi_2$ is the angle between \mathbf{q}_{1t} and \mathbf{q}_{2t} so

$$|\mathbf{p}_t|^2 = t_1 + t_2 + 2\sqrt{t_1 t_2} \cos \varphi$$

B. A. Kniehl, D. V. Vasin, V. A. Saleev; Phys. Rev. D 73 (2006) 074022