BFKL, Dipols, λ-Fits and AWAKE-VHEeP

Motivation:

Confinement forces emerge from complicated gluon-gluon interaction, experimental studies of confinement are difficult because everything happens very quickly, 10⁻²³ sec

However, at very high energies time dilatation slows down all physics processes what allows to describe complicated gluon structures from first principles

- BFKL resummation of all Feynman diagrams for gluon-gluon interaction
- highlight of AWAKE-VHEeP + physics studies

Henri Kowalski x-Fitter Meeting, Krakow, 5th of March 2018

the talk is based on:

Decoupling of the leading contribution in the discrete BFKL analysis of high-precision HERA data

Eur. Phys. J. C (2017) 77:777

H. Kowalski, L. N. Lipatov, D. A. Ross, O. Schulz

Discrete spectrum of BFKL eigenstates
Analysis of HERA-F₂ = BFKL-Ground State has to be saturated
Dipole Picture as a natural framework for analysis of saturated
Ground State

 λ -Fits with A. Luszczak

AWAKE-VHEeP project

The dynamics of Gluon Density at low x is determined by the amplitude for the scattering of a gluon on a gluon, described by the BFKL equation

$$\frac{\partial}{\partial \ln s} \mathcal{A}(s, \mathbf{k}, \mathbf{k}') = \delta(k^2 - k'^2) + \int dq^2 \mathcal{K}(\mathbf{k}, \mathbf{q}) \mathcal{A}(s, \mathbf{q}, \mathbf{k}')$$

solved by the Green function method, in terms of the eigenfunctions of the kernel

$$dk'^2 \mathcal{K}(\mathbf{k},\mathbf{k}') f_{\omega}(\mathbf{k}') = \omega f_{\omega}(\mathbf{k})$$

in LO, with fixed α_s

 $\begin{aligned} f_{\omega}(\mathbf{k}) &= \exp(i\nu \ln k^2)/k \\ \omega &= \alpha_s \chi_0(\nu) \end{aligned}$

Green f. method - preserves the scaling (conformal) invariance of BFKL ⇒ most consistent solution of BFKL

a possible bridge to Pomeron-Graviton?

In LO with fixed α_s BFKL predicts that F_2 is dominated by the leading trajectory $F_2 \sim (1/x)^{\omega}$

 $\omega = 4 \alpha_s \ln 2 \approx 0.5$

independent of Q²

with NLO with resummation

 $\omega \approx 0.3$ also independent of Q²

 \Rightarrow

clear contradiction to HERA data

KLRO \Rightarrow with running α_s , the eigenfunctions of the BFKL Kernel are given by

$$f_{\omega_n}(t) = \sqrt{\frac{\pi}{\phi'(\omega_n)}} N_{\omega_n}(t) Ai(z(t)).$$

 N_{ω} , z, ϕ are known functions of $t = ln(k^2/\Lambda)$

Comparison with HERA data

Construct the Green Function and integrate it with the proton impact factor

$$xg(x,k) = \int \frac{dk'}{k'} \Phi_p(k') \left(\frac{k'x}{k}\right)^{-\omega_n} k^2 \left(\sum_n f^*_{\omega_n}(k') f_{\omega_n}(k) + \int_{-\infty}^0 d\omega x^{-\omega} f_{-|\omega|}(t) f_{-|\omega|}(t')\right)$$

7

Integrate the gluon density with the photon impact factor

$$F_2(x,Q^2) = \int_x^1 d\zeta \int \frac{dk}{k} \Phi_\gamma(\zeta,Q,k) xg\left(\frac{x}{\zeta},k\right)$$

Markov-Chain MC Bayesian Analysis Tool probability density of the fit

$$\begin{split} \Phi_p(\mathbf{k}) &= Ak^2 e^{-bk^2}, \\ \mathbf{Q}^2 > 6 \text{ GeV}^2 \quad N_p = 51 \\ \mathbf{x} < 0.001 \quad & \mathbf{N}_p = 51 \\ \hline b \ (\text{GeV}^{-2}) & 10 & 20 \\ \hline A & 0.48771 & 0.47905 \\ \hline B & 1.37933 & 1.34020 \\ \hline C & 0.001578 & 0.002424 \\ \hline \eta_{neg} & -0.0754 & -0.0518 \\ \hline \chi^2 & 32.9 & 33.1 \\ \hline \hline b \ (\text{GeV}^{-2}) & 10 & 20 \\ \hline A & 0.51844 & 0.51913 \\ \hline B & 1.58697 & 1.58657 \\ \hline \eta_{neg} & -0.0911 & -0.0550 \\ \hline \chi^2 & 33.9 & 33.3 \\ \hline \end{split}$$

 $\eta_1 = 0.0707 \quad \eta_1 = 0.0503$

very low $\chi^2/N_{df} = 0,72$ due to uncorrelated errors

Q^2 dependence

KMS photon form factor, computed beyond LO

$Q^2 \operatorname{cut} (\operatorname{GeV}^2)$	4	6	9
	0.51852	0.51844	0.51818
В	1.58847	1.58697	1.58356
η_{neg}	-0.0911	-0.0911	-0.0911
N_p	59	51	37
χ^2	68.5	33.9	17.4
χ^2/N_{df}	1.25	0.72	$0,\!52$

Decoupling of the leading eigenfunction

the fit selected always a phase for which

 $\int \Phi_p(k) f_1(k) d(\ln k) \approx 0$

 $\Phi_p(k) = Ak^2 \exp(-bk^2)$

 $b = 10 \ GeV^{-2}$ $b = 20 \ GeV^{-2}$

 \Rightarrow $f_1(t)$ cannot be the Ground State of BFKL

→ Evaluate using Dipole Model

Dipole Model evaluation

$$\begin{split} \sigma_{T,L}^{\gamma^* p}(x,Q) &= \sum_f \int d^2 \vec{r} \int_0^1 \frac{dz}{4\pi} (\Psi^* \Psi)_{T,L}^f \, \sigma_{q\bar{q}}(x,r) \\ \frac{d\sigma_{q\bar{q}}}{d^2 \vec{b}} &= 2 \left[1 - \exp\left(-\frac{\pi^2}{2N_c} r^2 \alpha_S(\mu^2) x g(x,\mu^2) T(b)\right) \right]. \\ \mathbf{use \ BFKL \ Gluon \ Density \ with} \\ \mu^2 &= k^2 = C/r^2 + \mu_0^2 \end{split}$$

Ground State has some similarity to GBW Ansatz

$$\sigma_{q\bar{q}}^{\text{GBW}}(x,r) = \sigma_0 \left(1 - e^{-r^2 Q_s^2(x)/4} \right)$$
$$Q_s^2(x) = (x_0/x)^{\lambda_{\text{GBW}}} \sim \exp(-1/r^2)$$
$$\textbf{but exponentially suppressed at small r^2}$$

Extrapolation of the BFKL fit to very low x

can we see some signs of dominance of the second eigenfunction at HERA?

Effects of SuSy threshold at 3 TeV

$$\omega_n = \frac{0.96}{\pi\beta} \cdot \frac{1}{\eta + n - 1/4}$$

$$\beta^{SM} = 7$$

$$\frac{\beta}{\beta^{SUSY}} = \frac{1}{3}$$

IAX-PLANC

LLSCHAFT

е

Max-Planck-Institut fitr Phy Wein-Bas copinition

Summary of Prospects for a very high energy eP and eA collider Workshop

Allen Caldwell Max Planck Institute for Physics

> Low-x Workshop Bari, Italy

AWAKE

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Use SPS proton beam as drive beam (Single bunch 3e11 protons at 400 GeV)
 - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
 - First proton driven plasma wakefield experiment worldwide
 - First beam in 2016
- AWAKE Collaboration: 16 Institutes world-wide:

John Adams Institute for Accelerator Science, Budker Institute of Nuclear Physics & Novosibirsk State University CERN Cockroft Institute DESY Heinrich Heine University, Düsseldorf Instituto Superior Tecnico Imperial College Ludwig Maximilian University Max Planck Institute for Physics Max Planck Institute for Plasma Physics Rutherford Appleton Laboratory TRIUMF University College London Univesity of Oslo University of Strathclyde

AWAKE at CERN

A. Caldwell et al., "Path to AWAKE: Evolution of the concept", Nucl. Instrum. Meth. A829 (2016) 3-16; E. Gschwendtner et al. [AWAKE Collaboration], "AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN," Nucl. Instrum. Meth. A829, 76 (2016).

AWAKE is installed in

CNGS Facility (CERN Neutrinos to Gran Sasso)
→ CNGS physics program finished in 2012

October 11, 2016

NAPAC, Chicago

AWAKE: Experimental Program

Phase 1: Understand the physics of self-modulation instability.

Run II

Goals:

- stable acceleration of bunch of electrons with high gradients over long distances
- 'good' electron bunch emittance at plasma exit

Require:

- Compressed proton beam in SPS
- Short electron bunch with higher energy for loading wakefield
- Density step in plasma for freezing modulation
- Alternative plasma cell developments

Preliminary Run 2 electron beam parameters

Parameter	Value	
Acc. gradient	>0.5 GV/m	
Energy gain	10 GeV	
Injection energy	$\gtrsim 50 \text{ MeV}$	
Bunch length, rms	40–60 µm (120–180 fs)	
Peak current	200–400 A	
Bunch charge	67–200 pC	
Final energy spread, rms	few %	
Final emittance	$\lesssim 10 \ \mu { m m}$	

VHEeP

(Very High Energy electron-Proton collider)

Choose E_e = 3 TeV as a baseline for a new collider with E_p = 7 TeV yields Vs = 9 TeV. Can vary. - Centre-of-mass energy ~30 higher than HERA. - Reach in (high) Q² and (low) Bjorken x extended by ~1000 compared to HERA. - Opens new physics perspectives

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

One proton beam used for electron acceleration to then collide with other proton beam

Luminosity ~ $10^{28} - 10^{29}$ cm⁻² s⁻¹ gives ~ 1 pb-1 per year.

A. Caldwell, K. V. Lotov, Phys. Plasmas 18, 13101 (2011)

Particle Physics Perspectives

Consider:

- Physics with a high energy electron beam
 - E.g., search for dark photons
- Physics with an electron-proton or electron-ion collider
 - Low luminosity version of LHeC
 - Very high energy electron-proton, electron-ion collider

Are there fundamental particle physics topics for high energy but low luminosity colliders ?

I believe – yes ! Particle physicists will be interested in going to much higher energies, even if the luminosity is low.

In general – start investigating the particle physics potential of an AWAKE-like acceleration scheme. Contributions welcome !

October 11, 2016

NAPAC, Chicago

Back up slides

contribution to gluon density from negative $\boldsymbol{\omega}$

$$\Delta_{\omega < 0} \overline{g}(x,k) = \lim_{\omega_{min} \to -\infty} \int_{\omega_{min}}^{0} d\omega x^{-\omega} \int dt' f_{-|\omega|}(t) f_{-|\omega|}(t') \Phi_{P}(t'),$$

$$x = 10^{-3}$$

$$t = 12$$

