
xFitter Release plans

S. Glazov, xFitter meeting, Krakow, 6 March 2018

1

Outline

• Current status

• Next release new features present in master

• Remaining developments for the next release

• Long-term planing.

2

Release strategy

• Introduce sequence of more stable followed up by more

code-development oriented releases

• The first stable git release is 2.0.0 FrozenFrog, to be followed by

2.1.0 in late summer 2018.

• Users looking for recent developments may use git master

branch, which is ensured to run. The latest developments aimed

for 2.1.0 release ARE merged to it.

3

Release 2.1.0

• Work on release 2.1.0 is in progress, major work done.

• Big change in theory modules interface, substantial progress already.

4

New theory modules interface: basic ideas

• xFitter FrozenFrog provides simple interface to include new data

for existing methods of theory calculation (e.g. APPLGRID and

FastNLO). The interface is flexible enough to include additional

kFactors and operations, such as predictions of normalised cross

sections. All is done inside text files, without need to touch

xFitter code.

• Adding new theory modules, however, is a rather cumbersome

task which contains in parts changes of the core xFitter code.

→ in current xFitter master branch:

• Provide new modular interface for the theory predictions,

together with helper scripts.

• Loadable during execution.

• Maintain code optimization.

• Make sure that old Fortran codes are compatible with the new

interface.

5

New theory modules: some technical details

• Currently can be tried using master branch, which is the starting point

for release 2.1.0. Some implementation details may change

• Designed to have single theory module for (potentially) multiple data

files.

• New interface class ReactionTheory:
class ReactionTheory // must derrive from this class

//! Main function to compute predictions for @param dataSetID

virtual int compute(int dataSetID, valarray<double> &val, map<string, valarray<double> > &err) = 0;

//! Perform optional re-initialization for a given iteration

virtual void initAtIteration() {};

//! Perform optional action when minuit fcn 3 is called (normally after fit)

virtual void actionAtFCN3() {};

//! Perform optional action when called from error band estimation sequence.

virtual void errorBandAction(int ivector) {};

//! Return pointer-function to XFX for external use

const pXFXlike getXFX(const string& type="p") { return _xfx[type];};

// Helper function to get a parameter (double)

double GetParam(const string& name) const

• Can be then called in data files using Reaction = ’reaction’ type;

can be mixed with k-factors and other theory calculations in a usual way.

6

Example of Compute

• Designed to be executed for a given dataset, update

iteration-dependent parameters using initAtIteration.

• Snap-shot of implementation for APPLgrid (a bit simplified):
int ReactionAPPLgrid::compute(int dataSetID, valarray<double> &val,

map<string, valarray<double> > &err) {

// Get the associated grid:

auto grid = _grids[dataSetID];

// Convolute it using PDFs and alphaS provided by the interface:

val = grid->vconvolute(getXFX(), getAlphaS(),

_order[dataSetID]-1, _muR[dataSetID], _muF[dataSetID], _eScale[dataSetID][g]);

}

• Note that compute may return theory uncertainties which can be

used in the χ2 computation.

7

Example of errorBandAction

−1.0 −0.5 0.0 0.5 1.0 1.5
log10Q2/GeV2

0.000

0.002

0.004

0.006

0.008

0.010

b 0

• Recycle “bands” mechanism for fits with non-standard

parameters (e.g. Dipole model).

• Simple implementation to e.g. write out predictions for given
eigenvector:
void ReactionTensorPomeron::errorBandAction(int ivector) {

std::string FileName = "pom_"+std::to_string(ivector)+".csv";

writeOut(FileName);

}

8

Transfering parameters

Parameters can be specified in the data file:

TermInfo = ’GridName=datafiles/lhc/cms/wzProduction/1110.4973/grid-30-Z0_eta3.root’,

’GridName=datafiles/lhc/cms/wzProduction/1110.4973/grid-30-Z0_eta3.root:norm=1’

TheorExpr = ’A1/sum(A2)’

in the parameters.yalm file:

alphaS:

value: 0.118

step: 0.0

or in process-specific files, e.g.
yaml/reactions/APPLgrid/parameters.yaml:

APPLgrid: # APPLgrid specific

muF: 1.0

muR: 1.0

Order : NLO # APPLgrids are at max. NLO for now

More global parameter definition in parameters.yaml is re-defined

by the dataset specific definition.

YAML is a simple language, can be learned in few minutes:

https://learnxinyminutes.com/docs/yaml

9

Testing 2.1.0 theory modules

• Implemented processes:

APPLgrid FONLL_DISNC

BaseDISCC Fractal_DISNC

BaseDISNC Hathor

BaseHVQMNR HVQMNR_LHCb_7TeV_beauty

fastNLO HVQMNR_LHCb_7TeV_charm

FFABM_DISCC KFactor (Extend to theory errors ?)

FFABM_DISNC RT_DISNC

FONLL_DISCC

• Missing, planned for the release: Dipole, APFELgrid, ACOT

• Optional for 2.1.0: DiffDIS, TMD

The code requires extensive testing of various options,

their combination.

Testing can be started using
input steering/steering.txt.ALLdata.thexp
which uses new theory interface for all “official” xFitter
data samples.

10

Legacy codes in 2.1.0 and beyond

• For the release 2.1.0, all legacy calculation codes

will co-exist with the new methods.

• This will enable additional tests, however may

generate some confusions: several ways to achieve the

same goal.

• Warning messages will be added to the depreciated

methods (however probably not to all of them).

• From the follow up release 2.X.X, foresee major

cleanup of the code, removing legacy codes.

11

Code optimization

• Fast computation is important for systematic studies of global

PDF fits, other resource demanding studies such as MCMC

uncertainties.

• Fast theory predictions using APFELgrid technology

• Fast χ2 comutations using optimized libraries

Method Time per iteration, msec

Standard, optimized loop order 11.0

Standard, “wrong” loop order 17.3

Ubuntu 16.04 default BLAS 17.5

Intel MKL library 1.4

CUDA cublas 7.7

Example how to enable is in the steering.txt file, ReduceSyst
namelist:

&ReduceSyst

do_reduce = .true. ! turn-on to simplify/speedup chi2 calculation.

tolerance = 0.0 ! keep exact calculation, > 0.0 further improved speed.

useBlas = .true. ! turn on BLAS libraries

&End

12

Keeping up with the data

We should try to be more pro-active adapting exising data to xFitter.

Resent new samples come from CMS/ATLAS analyses directly, more

published data/theory grids are present.

13

Python interface
#!/usr/bin/env python

import sys

sys.setdlopenflags(256|1) # MAGIC !!!

sys.path.append("./lib")

import libxfitter_fit as xfitter

execute using standard steering files:

xfitter.logo()

xfitter.read_steer()

xfitter.init_pars()

xfitter.read_data()

xfitter.init_theory()

xfitter.fit()

import matplotlib.pyplot as plt

th = [xfitter.theo(i) for i in range(xfitter.ndata())]

plt.plot(th)

plt.savefig("th.pdf")

0 50 100 150 200 250 300 350

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

• Present since FrozenFrog release, updated from f2py to

boost-python C++ inteface possibility to execute xFitter

from Python.

• Potentially extend further, to allow Python theory modules, get

access to fitted parameters during the execution, etc.

14

Modular evolution

• The core of xFitter is the QCDNUM based evolution.

• The evolution code is flexible, fast, and resource friendly.

QCDNUM allows for simple usage of other evolution programs.

• Nevertheless for many tasks QCDNUM is not required, e.g.

LHAPDF6+Grid based profiling, kT-evolution.

• Several new developments are foreseen in changing the evolution

codes: would be nice to allow inclusion of them without

touching core of xFitter.

→

• New modular evolution, move to C++ QCDNUM.

• Loadable during execution.

• Interfaces to the new ReactionTheory modules, χ2 codes, PDFs,

αS , etc.

No concrete code yet, only ideas.

15

New physics in 2.1.0

• Already included or in planning:

– Total tt̄ cross section: updates to Hathor2.0 and new

implementation of Top++.

– SACOT−χ at NNLO.

– New TMD codes.

• May be added:

– Interfaces to DY resummation codes.

– ACOT using fast QCDNUM convolution.

– NNLO CC RT-scheme

– MMHT tolerance method

– Updates in Hessian PDF uncertainties:

∗ Update in ITERATE error band code

∗ Introduce Levenberg-Marquardt algorithm

– Merge with mcgen

– IPython/mathematica notebooks

• Other improvements may come “automatically” with improvements of

FastNLO and APPLGRID.

16

Beyond 2.1.0

• Fully modular code

• Revision of user interfaces

• Better connection to HepData

• Improved PDF parameter transfer.

• Better intefraces for non-standard PDF fits:

– Nuclear PDFs

– Meson PDFs

• Fragmentation functions, mixed PDF/FF fits.

→ user’s input is essential for future planning.

17

Improved PDF parameter transfer.

• Move away from PDF parameterization using old-style minuit

steering

• Define decomposition:

• Define free parameters:

• Define PDF functional form:

Development frozen since late 2016, can be re-activated. Can be

merged with updates towards a modular minimization package.

18

Summary

• Stable release 2.0.0 FrozenFrog: preparation for

major leap forward. In active use by most of the users.

• Planned release 2.1.0 with significant changes in the

internal structures.

• Simplifications of the code development and

maintenance.

• A few theory developments to be included.

• Follow up release 2.X.X with removal of legacy

codes, modular evolution and minimization.

→ User’s feedback is needed to define long-term strategy.

19

Extras

20

Getting full install

To get most of the packages automatically, use install-xfitter
script from the release or from the xFitter download page.

tools/install-xfitter

usage:

tools/install-xfitter <version|deps>

available versions:

2.0.0

master

to reinstall only dependences, run:

tools/install-xfitter deps

• For SL6, CentOS7 uses /cvmfs/sft.cern.ch compilers

• Most of the main packages are installed and configured:

LHAPDF6, APPLGRID (HOPPET), APFEL, APFELGRID,

MELA.

• Optional script for YAML libraries (tools/install-yaml)

21

Getting data

The release comes with minimal set of data files. Many more data are
available from http://xfitter.hepforge.org/data.html and can be
downloaded using helper script xfitter-getdata.sh

bin/xfitter-getdata.sh -p

available data sets in xFitter (to download use arXivNumber or reportNumber)

Collider Experiment Reaction arXivNumber or reportNumber

fixedTarget bcdms inclusiveDis cern-ep-89-06

hera h1 beautyProduction 0907.2643

...

lhc atlas drellYan 1305.4192

...

lhc cms jets 1212.6660

...

tevatron cdf jets 0807.2204

bin/xfitter-getdata.sh 1212.6660

The script has other useful options, e.g. download all the data at ones.

→ Future releases may also include automatic download of the

APPLGRID/FastNLO tables.

22

User interface
Standard data file format using “namelist” format (predating HTML):

&DATA

Name = ’ATLAS 2.76 TeV Jet data 0 <= |y| < 0.3 R=0.4’

NDATA = 10

NColumn = 28

ColumnType = 2*’Bin’,2*’Dummy’,’Sigma’,’Error’,22*’Error’

ColumnName = ’pt1’,’pt2’,’YBinSize’,’NPCorr’,’Sigma’,’stat’,

’JES1_RelSys_1’ , ’JES2_RelSys_7’

...

Reaction = ’pp jets APPLGRID’

TheoryType = ’expression’

TermName = ’A1’, ’K’

TermType = ’applgrid’,’kfactor’

TermSource = ’datafiles/lhc/atlas/jets/1304.4739/atlas-incljets-R04-eta1.root’,

’datafiles/lhc/atlas/jets/1304.4739/inclusivejetsKF_R04_00_03.dat’

TheorExpr= ’K*A1*1000’

...

&End

Moveing to YAML:
SetDesc: HERAPDF

Authors: ...

Reference: ...

Format: lhagrid1

DataVersion: 1

NumMembers: 1

Flavors: [-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 21]

....

→ perhaps we will allow for both formats for future releases.

23

BaseDIS interface
Data file:

TheoryType = ’expression’

TermName = ’R’

TermType = ’reaction’

TermSource = ’use:hf_scheme_DISCC’ ! can be set in parameters.yaml

! TermSource = ’BaseDISCC’ ! can be assigned directly

TermInfo = ’’

TheorExpr = ’R’

parameters.yaml file:

hf_scheme_DISCC :

value : ’BaseDISCC’ # this is zero mass scheme

→ implementation very similar the to NC scheme.

24

Updates in parameters.yaml file

parameters.yaml file:

#

RT DIS scheme settings:

#-------------------------

include : yaml/reactions/RT_DISNC/parameters.yaml

reactions/RT_DISNC/yaml/parameters.yaml file:

RT_DISNC: # Reaction-specific settings

varin : [0.0, 1.0, -0.666666666667, 1.0]

• (optionally) Move theory-module specific settings to

reactions/MODULE NAME/yaml/parameters.yaml file.

• These files are installed automatically to

--prefix/yaml/reactions/MODULE NAME/parameters.yaml

• tools/AddReaction.py generates required directories,

updates Makefile.am automatically.

25

(further) optimization of χ2 computation

• Recall that slowest part of χ2 computation was matrix

multiplcation of S
s

d
= S (Nsys,Ndata), C

s1 s2 =
∑

d S
s1

d
S

s2

d
= S S

T

(here, opposite to the data covariance matrix, the sum runs over

data points and not over the systematic sources.)

• Signiciant ∼ ×1.5 − 3 speedup when the loop over data points is

moved from inner most to outermost (probably releated to CPU

L1/L2 and L3 cache sizes).

• Try to use standard BLAS libraries which may be significantly

optimized for the architecture. Use:

– Default ubuntu 16.04 library

– Intel optimized mkl library

– GPU-accelerated cublas

26

χ
2 computation time comparison

Method Time per event, msec

Standard, optimized loop order 11.0

Standard, “wrong” loop order 17.3

Ubuntu 16.04 default BLAS 17.5

Intel MKL library 1.4

CUDA cublas 7.7

• Test using HERA2 inclusive data, new theory interface,

ZMVFNS on Dell precision 5520 (Core i7-7820HQ, Nvidia

Quadro M1200 GPU), gcc version 5.4, default O2 optimization.

• Intel MKL is better vs standard computation by factor > 5.

• CUDA is not as fast, probably limited by CPU-GPU data

transfer.

27

