xFitter Release plans

S. Glazov, xFitter meeting, Krakow, 6 March 2018

1

Outline

- Current status
- Next release new features present in master
- Remaining developments for the next release
- Long-term planing.

Release strategy

- Introduce sequence of more stable followed up by more code-development oriented releases
- The first stable git release is 2.0.0 FrozenFrog, to be followed by 2.1.0 in late summer 2018.
- Users looking for recent developments may use git master branch, which is ensured to run. The latest developments aimed for 2.1.0 release ARE merged to it.

⊘ passed	#316233 by 🧶	থু master -০- 433ff057	& 00:14:17
	latest	Merge branch 'Fix_LHAPDF_Analysis' into 'master'	⊞ 6 days ago

151 days left

24 Issues in version

8 Issues done

5 Issues to do in progress

Issues

1-24 of 24

1–24	-24 of 24				View in Issue Navigator		
Ρ	Т	Key	Summary	Assignee	Status		
0	Ŧ	XFITTER-18	Theory module infrastructure	Alexander Gla	IN PROGRESS		
0		XFITTER-56	Implement trigger of initAtiteration	Alexander Gla	CLOSED		
*		XFITTER-9	Implement theory interface for DIS reactions	Alexander Gla	IN PROGRESS		
*	Đ	XFITTER-20	New evolution code	Valerio Berton	IN PROGRESS		
*	Đ	XFITTER-21	new HATHOR interface	Oleksandr Zei	naiev IN PROGRESS		
*		XFITTER-22	New FastNLO interface	Daniel Andrea	as Brit IN PROGRESS		
*		XFITTER-24	New interface HVQMNR	Oleksandr Zei	naiev IN PROGRESS		
*		XFITTER-41	Check that relevant files are copied after install	Alexander Gla	CLOSED		
*		XFITTER-50	Various issues with openMP option	Alexander Gla	ZOV CLOSED		
*	Đ	XFITTER-54	S-ACOT chi at NNLO	Fred Olness	IN PROGRESS		
*		XFITTER-59	Problems with install-yaml script	Alexander Gla	CLOSED		
*		XFITTER-60	Extra minuit parameters behavior in non-fit modes	Oleksandr Zei	naiev CLOSED		
*	Đ	XFITTER-61	Theory interface FF ABM	Oleksandr Zei	naiev CLOSED		
*		XFITTER-62	verify that steering.txt.ALLdata works with the new theory interface	Oleksandr Zei	naiev IN PROGRESS		

- Work on release 2.1.0 is in progress, major work done.
- Big change in theory modules interface, substantial progress already.

New theory modules interface: basic ideas

- xFitter FrozenFrog provides simple interface to include new data for existing methods of theory calculation (e.g. APPLGRID and FastNLO). The interface is flexible enough to include additional kFactors and operations, such as predictions of normalised cross sections. All is done inside text files, without need to touch xFitter code.
- Adding new theory modules, however, is a rather cumbersome task which contains in parts changes of the core xFitter code.
- \rightarrow in current xFitter master branch:
 - Provide new modular interface for the theory predictions, together with helper scripts.
 - Loadable during execution.
 - Maintain code optimization.
 - Make sure that old Fortran codes are compatible with the new interface.

New theory modules: some technical details

- Currently can be tried using master branch, which is the starting point for release 2.1.0. Some implementation details may change
- Designed to have single theory module for (potentially) multiple data files.
- New interface class ReactionTheory:

```
class ReactionTheory // must derrive from this class
//! Main function to compute predictions for @param dataSetID
virtual int compute(int dataSetID, valarray<double> &val, map<string, valarray<double> > &err) = 0;
//! Perform optional re-initialization for a given iteration
virtual void initAtIteration() {};
//! Perform optional action when minuit fcn 3 is called (normally after fit)
virtual void actionAtFCN3() {};
//! Perform optional action when called from error band estimation sequence.
virtual void errorBandAction(int ivector) {};
//! Return pointer-function to XFX for external use
const pXFXlike getXFX(const string& type="p") { return _xfx[type];};
```

```
// Helper function to get a parameter (double)
double GetParam(const string& name) const
```

• Can be then called in data files using Reaction = 'reaction' type; can be mixed with k-factors and other theory calculations in a usual way.

Example of Compute

- Designed to be executed for a given dataset, update iteration-dependent parameters using initAtIteration.
- Snap-shot of implementation for APPLgrid (a bit simplified): int ReactionAPPLgrid::compute(int dataSetID, valarray<double> &val, map<string, valarray<double> > &err) {

```
// Get the associated grid:
auto grid = _grids[dataSetID];
    // Convolute it using PDFs and alphaS provided by the interface:
val = grid->vconvolute( getXFX(), getAlphaS(),
    _order[dataSetID]-1, _muR[dataSetID], _muF[dataSetID], _eScale[dataSetID][g] );
}
```

• Note that compute may return theory uncertainties which can be used in the χ^2 computation.

Example of errorBandAction

- Recycle "bands" mechanism for fits with non-standard parameters (e.g. Dipole model).
- Simple implementation to e.g. write out predictions for given eigenvector:

```
void ReactionTensorPomeron::errorBandAction(int ivector) {
   std::string FileName = "pom_"+std::to_string(ivector)+".csv";
   writeOut(FileName);
}
```

Transfering parameters

Parameters can be specified in the data file:

in the parameters.yalm file:

```
alphaS:
  value: 0.118
  step: 0.0
or in process-specific files, e.g.
  yaml/reactions/APPLgrid/parameters.yaml:
```

```
APPLgrid: # APPLgrid specific
muF: 1.0
muR: 1.0
Order : NL0 # APPLgrids are at max. NL0 for now
```

More global parameter definition in parameters.yaml is re-defined by the dataset specific definition.

YAML is a simple language, can be learned in few minutes: https://learnxinyminutes.com/docs/yaml

Testing 2.1.0 theory modules

• Implemented processes:

APPLgrid	FONLL_DISNC
BaseDISCC	Fractal_DISNC
BaseDISNC	Hathor
BaseHVQMNR	HVQMNR_LHCb_7TeV_beauty
fastNL0	HVQMNR_LHCb_7TeV_charm
FFABM_DISCC	KFactor (Extend to theory errors ?)
FFABM_DISNC	RT_DISNC
FONLL DISCC	

- Missing, planned for the release: Dipole, APFELgrid, ACOT
- Optional for 2.1.0: DiffDIS, TMD

The code requires extensive testing of various options, their combination.

Testing can be started using input_steering/steering.txt.ALLdata.thexp which uses new theory interface for all "official" xFitter data samples.

Legacy codes in 2.1.0 and beyond

- For the release 2.1.0, all legacy calculation codes will co-exist with the new methods.
- This will enable additional tests, however may generate some confusions: several ways to achieve the same goal.
- Warning messages will be added to the depreciated methods (however probably not to all of them).
- From the follow up release 2.X.X, foresee major cleanup of the code, removing legacy codes.

Code optimization

- Fast computation is important for systematic studies of global PDF fits, other resource demanding studies such as MCMC uncertainties.
- Fast theory predictions using APFELgrid technology
- Fast χ^2 comutations using optimized libraries

Method	Time per iteration, msec
Standard, optimized loop order	11.0
Standard, "wrong" loop order	17.3
Ubuntu 16.04 default BLAS	17.5
Intel MKL library	1.4
CUDA cublas	7.7

Example how to enable is in the steering.txt file, ReduceSyst namelist:

&ReduceSyst
 do_reduce = .true. ! turn-on to simplify/speedup chi2 calculation.
 tolerance = 0.0 ! keep exact calculation, > 0.0 further improved speed.
 useBlas = .true. ! turn on BLAS libraries
&End

Keeping up with the data

No	Collider	Experiment	Reaction	arXiv	Readme
1	fixedTarget	bcdms	inclusiveDis	<u>cem-ep-89-06</u>	README
2	hera	h1	beautyProduction	0907.2643	
3	hera	h1	inclusiveDis	1012.4355	
4	hera	h1	jets	0706.3722	README
5	hera	h1	jets	0707.4057	README
6	hera	h1	jets	0904.3870	README
7	hera	h1	jets	0911.5678	README
8	hera	h1	jets	1406.4709	README
9	hera	h1zeusCombined	charmProduction	1211.1182	
10	hera	h1zeusCombined	inclusiveDis	0911.0884	
11	hera	h1zeusCombined	inclusiveDis	1506.06042	
12	hera	zeus	beautyProduction	1405.6915	
13	hera	zeus	diffractiveDis	0812.2003	
14	hera	zeus	jets	0208037	
15	hera	zeus	jets	0608048	
16	hera	zeus	jets	1010.6167	
17	lhc	atlas	drellYan	1305.4192	
18	lhc	atlas	drellYan	1404.1212	
19	lhc	atlas	jets	1112.6297	
20	lhc	atlas	jets	<u>1304.4739</u>	
21	lhc	atlas	topProduction	1406.5375	
22	lhc	atlas	topProduction	1407.0371	
23	lhc	atlas	wzProduction	<u>1203.4051</u>	
24	lhc	atlas	wzProduction	1612.03016	README
25	lhc	cms	jets	1212.6660	
26	lhc	cms	jets	1609.05331	
27	lhc	cms	topProduction	1208.2671	
28	lhc	cms	topProduction	<u>1211.2220</u>	
29	lhc	cms	topProduction	1703.01630	
30	lhc	cms	topProduction	cms-pas-top-11-024	
31	lhc	cms	wzProduction	<u>1110.4973</u>	
32	lhc	cms	wzProduction	1206.2598	
33	lhc	cms	wzProduction	1310.1138	
34	lhc	cms	wzProduction	1312.6283	
35	lhc	cms	wzProduction	1603.01803	
36	lhc	lhcb	beautyProduction	1306.3663	
37	lhc	lhcb	charmProduction	1302.2864	
38	lhc	lhec	inclusiveDis	1206.2913	README

We should try to be more pro-active adapting exising data to xFitter. Resent new samples come from CMS/ATLAS analyses directly, more published data/theory grids are present.

- Present since FrozenFrog release, updated from f2py to boost-python C++ inteface possibility to execute xFitter from Python.
- Potentially extend further, to allow Python theory modules, get access to fitted parameters during the execution, etc.

Modular evolution

- The core of xFitter is the QCDNUM based evolution.
- The evolution code is flexible, fast, and resource friendly. QCDNUM allows for simple usage of other evolution programs.
- Nevertheless for many tasks QCDNUM is not required, e.g. LHAPDF6+Grid based profiling, kT-evolution.
- Several new developments are foreseen in changing the evolution codes: would be nice to allow inclusion of them without touching core of xFitter.
- \rightarrow
 - New modular evolution, move to C++ QCDNUM.
 - Loadable during execution.
 - Interfaces to the new ReactionTheory modules, χ^2 codes, PDFs, α_S , etc.

No concrete code yet, only ideas.

New physics in 2.1.0

- Already included or in planning:
 - Total $t\bar{t}$ cross section: updates to Hathor2.0 and new implementation of Top++.
 - SACOT- χ at NNLO.
 - New TMD codes.
- May be added:
 - Interfaces to DY resummation codes.
 - ACOT using fast QCDNUM convolution.
 - NNLO CC RT-scheme
 - MMHT tolerance method
 - Updates in Hessian PDF uncertainties:
 - * Update in ITERATE error band code
 - * Introduce Levenberg-Marquardt algorithm
 - Merge with mcgen
 - IPython/mathematica notebooks
- Other improvements may come "automatically" with improvements of FastNLO and APPLGRID.

- Fully modular code
- Revision of user interfaces
- Better connection to HepData
- Improved PDF parameter transfer.
- Better intefraces for non-standard PDF fits:
 - Nuclear PDFs
 - Meson PDFs
- Fragmentation functions, mixed PDF/FF fits.
- \rightarrow user's input is essential for future planning.

Improved PDF parameter transfer.

- Move away from PDF parameterization using old-style minuit steering
- Define decomposition:
 Composition = 'u=uval+usea',

```
'd=dval+dsea',
```

• Define free parameters:

```
=

'Buv = 0.5 0.001 [ 0.1 20.]',

'Cuv = 0.3 0.01',
```

Define PDF functional form: Parametrisation = 'uval = Auv * x^Buv * (1-x)^Cuv * (1 + Fuv*x^0.5 + Duv*x + Euv*x*x)', 'dval = Adv * x^Bdv * (1-x)^Cdv * (1 + Fdv*x^0.5 + Ddv*x + Edv*x*x)',

Development frozen since late 2016, can be re-activated. Can be merged with updates towards a modular minimization package.

- Stable release 2.0.0 FrozenFrog: preparation for major leap forward. In active use by most of the users.
- Planned release 2.1.0 with significant changes in the internal structures.
- Simplifications of the code development and maintenance.
- A few theory developments to be included.
- Follow up release 2.X.X with removal of legacy codes, modular evolution and minimization.
- \rightarrow User's feedback is needed to define long-term strategy.

Extras

Getting full install

To get most of the packages automatically, use install-xfitter script from the release or from the xFitter download page.

```
tools/install-xfitter
```

```
usage:
tools/install-xfitter <version|deps>
available versions:
2.0.0
master
```

```
to reinstall only dependences, run:
tools/install-xfitter deps
```

- For SL6, CentOS7 uses /cvmfs/sft.cern.ch compilers
- Most of the main packages are installed and configured: LHAPDF6, APPLGRID (HOPPET), APFEL, APFELGRID, MELA.
- Optional script for YAML libraries (tools/install-yaml)

Getting data

The release comes with minimal set of data files. Many more data are available from http://xfitter.hepforge.org/data.html and can be downloaded using helper script xfitter-getdata.sh

bin/xfitter-getdata.sh -p

av	ailable data Collider fixedTarget hera	sets in xFitter (to Experiment bcdms h1	download use arXivNu Reaction inclusiveDis beautyProduction	mber or reportNumber) arXivNumber or reportNumber cern-ep-89-06 0907.2643
••••	lhc	atlas	drellYan	1305.4192
••••	lhc	cms	jets	1212.6660
	tevatron	cdf	jets	0807.2204

bin/xfitter-getdata.sh 1212.6660

The script has other useful options, e.g. download all the data at ones.

 \rightarrow Future releases may also include automatic download of the APPLGRID/FastNLO tables.

Standard data file format using "namelist" format (predating HTML):

```
&DATA
  Name = 'ATLAS 2.76 TeV Jet data 0 \le |y| \le 0.3 R=0.4'
  NDATA = 10
  NColumn = 28
  ColumnType = 2*'Bin', 2*'Dummy', 'Sigma', 'Error', 22*'Error'
 ColumnName = 'pt1', 'pt2', 'YBinSize', 'NPCorr', 'Sigma', 'stat',
                 'JES1_RelSys_1' , 'JES2_RelSys_7'
  . . .
  Reaction = 'pp jets APPLGRID'
  TheoryType = 'expression'
  TermName = 'A1', 'K'
  TermType = 'applgrid', 'kfactor'
 TermSource = 'datafiles/lhc/atlas/jets/1304.4739/atlas-incljets-R04-eta1.root',
               'datafiles/lhc/atlas/jets/1304.4739/inclusivejetsKF_R04_00_03.dat'
  TheorExpr= 'K*A1*1000'
. . .
```

```
&End
```

Moveing to YAML:

```
SetDesc: HERAPDF
Authors: ...
Reference: ...
Format: lhagrid1
DataVersion: 1
NumMembers: 1
Flavors: [-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 21]
....
```

 \rightarrow perhaps we will allow for both formats for future releases.

Data file:

```
TheoryType = 'expression'
TermName = 'R'
TermType = 'reaction'
TermSource = 'use:hf_scheme_DISCC' ! can be set in parameters.yaml
! TermSource = 'BaseDISCC' ! can be assigned directly
TermInfo = ''
TheorExpr = 'R'
parameters.yaml file:
hf_scheme_DISCC :
    yalue : 'BaseDISCC' # this is zero mass scheme
```

 \rightarrow implementation very similar the to NC scheme.

Updates in parameters.yaml file

```
parameters.yaml file:
```

```
#
# RT DIS scheme settings:
#------
include : yaml/reactions/RT_DISNC/parameters.yaml
```

```
reactions/RT_DISNC/yaml/parameters.yaml file:
```

```
RT_DISNC: # Reaction-specific settings
varin : [0.0, 1.0, -0.6666666666667, 1.0]
```

- (optionally) Move theory-module specific settings to reactions/MODULE_NAME/yaml/parameters.yaml file.
- These files are installed automatically to

 -prefix/yaml/reactions/MODULE_NAME/parameters.yaml
- tools/AddReaction.py generates required directories, updates Makefile.am automatically.

(further) optimization of χ^2 computation

- Recall that slowest part of χ^2 computation was matrix multiplcation of $S_d^s = S(N_{sys}, N_{data}), C^{s_1 s_2} = \sum_d S_d^{s_1} S_d^{s_2} = S S^T$ (here, opposite to the data covariance matrix, the sum runs over data points and not over the systematic sources.)
- Signiciant ~ ×1.5 3 speedup when the loop over data points is moved from inner most to outermost (probably releated to CPU L1/L2 and L3 cache sizes).
- Try to use standard BLAS libraries which may be significantly optimized for the architecture. Use:
 - Default ubuntu 16.04 library
 - Intel optimized mkl library
 - GPU-accelerated cublas

χ^2 computation time comparison

Method	Time per event, msec
Standard, optimized loop order	11.0
Standard, "wrong" loop order	17.3
Ubuntu 16.04 default BLAS	17.5
Intel MKL library	1.4
CUDA cublas	7.7

- Test using HERA2 inclusive data, new theory interface, ZMVFNS on Dell precision 5520 (Core i7-7820HQ, Nvidia Quadro M1200 GPU), gcc version 5.4, default O2 optimization.
- Intel MKL is better vs standard computation by factor > 5.
- CUDA is not as fast, probably limited by CPU-GPU data transfer.