The evolution of APFEL: APEL APEL The evolution of APFEL: #### Valerio Bertone NIKHEF and VU Amsterdam xFitter External Meeting 2018 March 6, 2018, Krakow #### Motivation - Since its born, APFEL has undergone a large number of developments: - FONLL structure functions, - NLO QED evolution, - lepton PDFs, - Scale variations, - intrinsic charm, - displaced thresholds, - MS masses, - \bullet small-x resummation, - interface to the NNPDF code, - **...** - Way beyond the purposes for which it was conceived: - very large memory footprint, - non-optimal "convenience" solutions for the new modules, - in hard to maintain. - APFEL is written in FORTAN77 that is not suitable for large projects: - lack of modularity, - non-optimal (built-in) memory management. - Compelling reasons to rewrite APFEL keeping in mind its applications. - Concerning the language, C++ was a somewhat natural choice: - **modularity** ensured by the object-oriented nature, - **dynamical** allocation of the **memory**, - used for the new-generation tools (e.g. LHAPDF) and thus easier **interface**, - powerful features coming with the **C++11 standard**. - The code **design** was driven by a profound rethinking of the strategy: - the main application field is collinear factorisation. - In this context, most of the relevant quantities are computed as convolutions: **operator** *O*: typically a complicated object slow to compute: *e.g.* a **perturbative** hard cross section. **d**: typically a fast-to-access function: *e.g.* a **non-perturbative** PDF or a FF. - \bullet Adopt the **x-space** (as opposed to *N*-space) formalism: - \bullet most of the results are available in x-space, - no restriction on the parameterisations. - The purpose is to make convolutions **fast**. - Define an **interpolation grid** in x with N+1 nodes $g \equiv \{z_0, \ldots, z_N\}$ - \bullet Use the interpolation formula for the **distribution** d: $$\frac{d}{d}(z) = \sum_{\beta=0}^{N} w_{\beta}(z) \frac{d}{\beta} \quad \text{with} \quad \frac{d}{\beta} = \frac{d}{d}(x_{\beta})$$ • $w_{\beta}(z)$ interpolating function (typically a Lagrange polynomial of some degree n). • piecewise function different from zero over n+1 intervals around β . Zero elsewhere. Hard to integrate. • Compute the integral of the **operator** O with the interp. functions: $$O_{\alpha\beta} \equiv \int_{x_{\alpha}}^{1} \frac{dy}{y} O(y) w_{\beta} \left(\frac{x_{\alpha}}{y}\right)$$ such that: $$M_{\alpha} \equiv \sum_{\beta=0}^{N} O_{\alpha\beta} d_{\beta}$$ with $M(x) = \sum_{\alpha=0}^{N} w_{\alpha}(x) M_{\alpha}$ - This reduces convolutions to multiplications between a matrices and vectors: **linear algebra**. - Therefore, the **three main ingredients** of of APFEL++ are: - 1. the **interpolation grid** g along with the interpolating functions, - 2. the **distribution** d_{β} , - 3. the **operator** $O_{\alpha\beta}$. - They can be **encapsulated** in **C++ objects** to compute convolutions. - An additional complication is given by the **flavour structure**: - distributions are vectors in flavour space, - operators are either matrices or vectors in the flavour space. $$\frac{df_{i\alpha}}{d\ln\mu^2} = \sum_{j,\beta} P_{\alpha\beta}^{ij} f_{j\beta}$$ $$F_{lpha} = \sum_{j,eta} C^{j}_{lphaeta} f_{jeta}$$ #### **DGLAP** equations DIS structure functions - Matrices in flavour space are often **sparse**. - Define **sets of objects** with a **flavour map**: - associate one operator to one distribution, e.g.: $$P_{qq}, P_{gq} \rightarrow \Sigma$$ $P_{qg}, P_{gg} \rightarrow g$ $P^v \rightarrow V$ $P^+ \rightarrow T_{3,8,15,24,35}$ $P^- \rightarrow V_{3,8,15,24,35}$ - the same operator can be assigned to more than a distribution and viceversa. - avoid multiplications by zero. - An additional complication is given by the **flavour structure**: - distributions are vectors in flavour space, - operators are either matrices or vectors in the flavour space. $$\frac{df_{i\alpha}}{d\ln\mu^2} = \sum_{j,\beta} P_{\alpha\beta}^{ij} f_{j\beta}$$ $$F_{lpha} = \sum_{j,eta} C_{lphaeta}^j f_{jeta}$$ #### **DGLAP** equations DIS structure functions - Matrices in flavour space are often sparse. - Define **sets of objects** with a **flavour map**: - associate one operator to one distribution, e.g.: - the same operator can be assigned to more than a distribution and viceversa. - avoid multiplications by zero. - Define **multiplication** between sets of distributions and operators: - overload multiplication operator in C++. - Making convolutions with a flavour structure becomes very **easy**. ``` //_____ Set<Distribution> Dglap::Derivative(int const& nf, double const& t, Set<Distribution> const& f) const { return _SplittingFunctions(nf, exp(t/2)) * f; } ``` - Define multiplication between sets of distributions and operators: - overload multiplication operator in C++. - Making convolutions with a flavour structure becomes very easy. Overloaded multiplication: takes care of convolutions and flavour structure - The flavour structure is completely defined by the flavour map: - same procedure for convolutions in any flavour basis, - sets of operators and distributions multiplied only if they **share** the same map, - \bullet easy to account for n_f dependence. • Use (e.g.) 4th order Runge-Kutta to solve systems of **ordinary differential equations:** ``` \begin{cases} \frac{d\mathbf{y}}{dt} = \mathbf{F}(t, \mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases} Template function... template<class U> ... that returns a std::function... function<U(double const&, U const&, double const&)> rk4(function<U(double const& t, U const& Obj)> const&(f)) ... of a std::function return [f](double const& t, U con [t,y,dt,f]](U con [t,y,dt,f,dy1]](U con [t,y,dt,f,dy1,dy2](U con [t,y,dt,f,dy1,dy2,dy3](U con [t,y,dt,f,dy1,dy2,dy3](U con (dy1 + 2 * dy2 + 2 * dy3 + dy4) / 6;}(dt * f(t + dt , y + dy3));}(dt * f(t + dt / 2, y + dy2 / 2));}(dt * f(t + dt / 2, y + dy1 / 2));}; dt * f(t + dt / 2, y + dy1 / 2));};) -> U{ return U const& dy4 dt * f(t , y));}; ``` • Very same function used to solve **both** the DGLAP and the α_s RGE. #### Doxygen documentation https://vbertone.github.io/apfelxx/html/index.html # Convoluting operators - An operation that is often needed is the convolution between operators: - involved in the computation of factorisation scale variations, - computation of the PDF evolution operator. $$M(x) = O^{(1)}(x) \otimes O^{(2)}(x) \otimes d(x) \rightarrow M_{\alpha} = \sum_{\beta} \sum_{\gamma} O^{(1)}_{\alpha\gamma} O^{(2)}_{\gamma\beta} d_{\beta}$$ $$Consider for example:$$ Consider for example: $$P_{qq}^{(0)}(x) = \left(\frac{1+x^2}{1-x}\right)_{+} \quad \text{such that} \quad P_{qq}^{(0)}(x) \otimes P_{qq}^{(0)}(x) = \left(\frac{4(x^2+1)\ln(1-x)+x^2+5}{1-x}\right)_{+} \\ - \frac{(3x^2+1)\ln x}{1-x} - 4 + \left(\frac{9}{4} - \frac{2\pi^2}{3}\right)\delta(1-x)$$ • Compare the numerical convolution with the analytic result (using a test function f(x)): ### **Evolution operator** • The DGLAP can be written in terms the **evolution operator**: $$\begin{cases} \frac{d}{d \ln \mu^2} \Gamma_{\alpha\beta}^{ij}(\mu_0, \mu) = \sum_{k,\gamma} P_{\alpha\gamma}^{ik}(\mu) \Gamma_{\gamma\beta}^{kj}(\mu_0, \mu) \\ \Gamma_{\alpha\beta}^{ij}(\mu_0, \mu_0) = \delta_{ij} \delta_{\alpha\beta} \end{cases}$$ - The evolution operator can be used to evolve any initial scale PDF: - harder to compute than evolving PDFs, - it has to be computed **only once** (for each μ_0 and μ). - This object is used for the construction of the **APFELgrid** tables: - extremely hard to compute in APFEL (Fortran), - very easy with APFEL++. ### Applications • DGLAP evolution at NNLO: DIS structure functions at NNLO: # PDF evolution performance Comparison between different codes: | NNLO QCD evolution ~200 points in x ~50 points in Q | Initialisation [s] | Interpolate PDFs
10 ⁶ times [s] | |---|-----------------------------------|---| | APFEL++ | 0.4 (0.27 in. + 0.13 tab.) | 0.6 | | APFEL | 2.4 | 1.9 | | HOPPET | 0.4 | 1.3 | | QCDNUM | 8.7 | 1.3 | • Compare APFEL++ to LHAPDF when interpolating a **std::map**: | PDF set: NNPDF31_nlo_as_0118 | Interpolate a PDF map
10 ⁵ times [s] | |------------------------------|--| | APFEL++ | 0.7 | | LHAPDF | 0.5 | #### Old functionalities - The FORTRAN version of APFEL implements a **very large** number of functionalities. - in Currently working to implement all of them also in APFEL++. - **Missing** functionalities in APFEL++ to be implemented: - QED corrections, - intrinsic charm, - MS masses, - small-x resummation (need to interface APFEL++ to HELL), - scale variations, - "minor" functionalities: - target mass corrections, - different solutions for the DGLAP and coupling evolutions (?). #### New functionalities - I have already started using APFEL++ for tasks difficult to implement in (or even out of reach) for the FORTAN version. - Examples are: - Semi-Inclusive DIS (SIDIS) in collinear factorisation: - double convolution with time- and space-like evolution at the same time. - TMD phenomenology: - evolution and matching, - \bullet Drell-Yan and SIDIS q_T distributions. - DGLAP evolution with splitting explicitly depending the factorisation scale: - e.g. "Physical"-scheme evolution (by Martin and Ryskin). - Transversity distributions (PDFs and FFs). #### SIDIS in collinear factorisation \bullet SIDIS cross sections (integrated over q_T) have this structure: $$D(x,z) = \int_{x}^{1} \frac{d\xi}{\xi} \int_{z}^{1} \frac{d\zeta}{\zeta} O\left(\frac{x}{\xi}, \frac{z}{\zeta}\right) d^{(1)}(\xi) d^{(2)}(\zeta)$$ • But the hard cross sections (at least up to NLO) factorise as: $$O(x,z) = \sum_{i} K_{i}C_{i}^{(1)}(x)C_{i}^{(2)}(z)$$ Combination of single convolutions: Next I will also try with Drell-Yan cross sections. # TMD Evolution (PDFs) $$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$ $$\times \exp\left\{K(b_*; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$ $$\times \exp\left\{g_{j/P}(x,b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$ ### TMD Evolution (PDFs) $$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_{j} C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$ $$\times \left[\exp \left\{ K(b_*; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'} \right] \right\} \right] : B$$ $$\times \left[\exp \left\{ g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F}} \right\} \right] : C$$ - $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$ - matching to the collinear region - factorises as hard and non-perturbative - numerically cumbersome - precompute using APFEL - CS evolution - perturbative - matching between the small and large $b_{\rm T}$ - non perturbative - parametrised and fitted to data #### SIDIS in TMD factorisation In SIDIS, what enters the computation of the cross sections is: $$\mathcal{L}_{\text{SIDIS}} = \int \frac{d^2 \mathbf{b}_T}{(2\pi)^2} e^{-i\mathbf{q}_T \cdot \mathbf{b}_T} F_{f/P}(x, \mathbf{b}_T; \mu, \zeta_F) D_{H/f}(x, \mathbf{b}_T; \mu, \zeta_D)$$ #### Fourier transform **PDFs** **FFs** - The ingredients are: - a set of evolved TMD-PDFs, - a set of evolved TMD-FFs, - of the Fourier transform of its product. - Complex set of tasks that have to be performed optimally - APFEL provides the ideal environment for this computation: - fast and accurate interpolation techniques, - forecomputation of the time consuming bits. # Matching collinear and TMD regimes #### Plans for the future - High-level user interface: - set of functions to access the various functionalities, - ensure back-compatibility with APFEL? - Interface to LHAPDF: - create with APFEL objects to be fed to LHAPDF, - LHAPDF takes care of doing the interpolation, - "standard" interface commonly used in our field. - Interface to yaml for parsing of evolution parameters. - Interface to APFELgrid. - Interface to APPLgrid/FastNLO: - Drell-Yan and SIDIS cross sections (?). - PDF evol. and structure functions in a "OO" fashion useful for **xFitter**: - many possible evolution and structure functions available at the same time, - assign different evolutions to different datasets (e.g. H-VFNS), - fit PDFs and FFs at the same time (space- and time-like evolution).