BSM Physics @ ep Colliders

Kechen Wang Office: Room 138, Building 1a

DESY Theory - Fellow's Meeting 2017 Dec. 12, 2017

Self-introduction

ep Colliders: LHeC / FCC-eh

Singly Charged Higgs

[by Georges Azuelos, Hao Sun, and Kechen Wang]

Summary

Personal Experience

Research Interests

Phenomenology of BSM physics at pp, e^-e^+ , ep colliders

SUSY particle searches

- Stop search @ pp colliders (LHC)
 Stop coannihilation, Bino-Higgsino DM, fully hadronic final state, Compressed scenarios.
- EW sector search @ pp, ep Slepton, SUSY DM using VBF.
- Higgs physics
 - Higgs @ pp, e⁻e⁺ (CEPC, ILC, CLIC) Constraining a Natural SUSY Model ← Higgs coupling measurements; Constraining EFT Operators ← Higgs measurements in e⁺ e⁻ → HZ & e⁺ e⁻ → WW.
 - BSM Higgs @ ep
- Neutrino physics
 - Sterile neutrinos @ pp Discovering & Distinguishing Dirac / Majorana ← tri-lepton final state Discovering @ 100 TeV ← 2/ + 2j final state
 - Sterile neutrinos @ ep

Intersection of particle physics, cosmology and astrophysics

> Dark matter, Axion

60 GeV acceleration with Recirculating Linacs:

Electron Beam

Slide based on [Oliver Brüning, FCC week 2017 in Berlin, "FCC-eh Configuration and Performance"]

Animation from [A. Bogacz (JLab) @ ERL'15]

Layout & Civil Engineering

Three accelerating passes through each of the two 10 GeV linacs (efficient use of LINAC installation!) → 60 GeV beam energy

LHeC, HE-LHeC, FCC-eh Baselines

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
$E_p \; [\text{TeV}]$	7	7	12.5	50
$E_e \; [\text{GeV}]$	60	60	60	60
$\sqrt{s} [\text{TeV}]$	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
$\gamma \epsilon_p \; [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch $[10^9]$	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor H_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} cm^{-2} s^{-1}]$	1	8	12	15

[EDMS 17979910 FCC-ACC-RPT-0012 V1.0, 6 April, 2017, "A Baseline for the FCC-he"]

[Oliver Brüning, John Jowett, Max Klein, Dario Pellegrini, Daniel Schulte, Frank Zimmermann]

BSM Topics @ ep Colliders

★ Indirect impact from improved PDF

★ Direct Searches

- Leptoquarks: limits, quantum # & couplings
- Contact interactions: eeqq
- Anomalous gauge couplings: vvv,vvvv
- Vector boson scattering
- BSM in the top sector
- RPC SUSY: DM, sleptons
- RPV SUSY: neutralinos, squarks
- BSM Higgs: exotic (invisible) decay; H⁺, H⁺⁺
- Sterile neutrinos

- ★ Ideal to search and study properties of new particles with
 → couplings to electron-quark / vector bosons, EW / VBF production, multi-jets final states
- ★ Compared with *pp* colliders
 - → Some promising:
 clean environment (samller bkg, low pileup), forward objects
 Come difficulty
 - → Some difficult: small production due to small \sqrt{s}

More details,

see [Monica D'Onofrio's talk "BSM searches at FCC-eh (*selected topics*)" in the 1st FCC Physics week, <u>https://indico.cern.ch/event/550509/contributions/2413829/attachments/1398547/2133088/FCCPhysics_BSMJan2017.pdf</u>] & [Kechen Wang's talk "BSM Physics at Energy-frontier Lepton-hadron Colliders" in the EPS-HEP Conference 2017, https://indico.cern.ch/event/466934/contributions/2583549/attachments/1489690/2314998/EPS-HEP_BSM_at_ep_colliders_2.pdf]

Signal Scenarios for H_5^{\pm} Search

Collider: FCC-eh & LHeC

Signal:

Production of H_5^+ & H_5^- in the Georgi – Machacek Model

- → Final state: $1 e^{-} + 1 j + 1 Z(-> l^{+} l) + 1 W(-> j j)$; $l = e, \mu$.
- → Simulation by "MadGraph + PYTHIA + Delphes".

 \rightarrow BDT analysis.

Final state: 1 e⁻ + 1 j + 1 Z(-> *l*⁺ *l*) + 1 W(-> j j) *l* = e, μ

Signal production cross section p e⁻ \rightarrow j e⁻ H_5^{\pm} , $(H_5^{\pm} \rightarrow Z W^{\pm})$

Background1: p e- > j e- z v

generate p e- > j e- z w+, z > l+ l-, w+ > jjadd process p e- > j e- z w-, z > l+ l-, w- > jjadd process p e- > j e- z z, z > l+ l-, z > jj

Background2: jets from QCD radiation generate p e- > j e- z j j, z > *l*+ *l*-

Strategy for H_5^{\pm} Search

Final state:

 $1 e^{-} + 1 j + 1 Z(-> l^{+} l) + 1 W(-> j j)$ $l = e, \mu$

Simulation by "MadGraph + PYTHIA + Delphes".

Pre-selection cuts:

- (1) selecting at least 3 jets with p_T > 20 GeV;
 (2) selecting at least 3 leptons with p_T > 10 GeV, and requiring charges (e⁻, e⁻, e⁺) or (e⁻, μ⁺, μ⁻);
 (3) veto b-jets with p_T > 20 GeV;
 (4) veto taus with p_T > 10 GeV.
- → 2 jets with invariant mass closest to the W mass are considered as the jets from W decay.

 \rightarrow (μ^+ , μ^-), or (e⁻, e⁺) with invariant mass closet to the Z mass are considered as the leptons from Z decay

Analysis at detector-level using the BDT method.

Input observables for BDT Training & Test:

 $\mathsf{MET}, \, \mathsf{H}_{\mathsf{T}};$

 $\begin{array}{l} p_{T}(e_{fwd}), \ \eta(e_{fwd}), \ p_{T}(j_{fwd}), \ \eta(j_{fwd}), \\ p_{T}(e_{fwd}+j_{fwd}), \ \eta(e_{fwd}+j_{fwd}), \ M(e_{fwd}+j_{fwd}), \\ \Delta \eta(e_{fwd}, \ j_{fwd}), \ \Delta \phi(e_{fwd}, \ j_{fwd}); \end{array}$

 $\begin{array}{l} p_{T}(j_{w,1}), \ \eta(j_{w,1}), \ p_{T}(j_{w,2}), \ \eta(j_{w,2}), \\ p_{T}(j_{w,1}+j_{w,2}), \ \eta(j_{w,1}+j_{w,2}), \ M(j_{w,1}+j_{w,2}), \\ \Delta\eta(j_{w,1}, \ j_{w,2}), \ \Delta\phi(j_{w,1}, \ j_{w,2}); \end{array}$

 $p_T(Z+W)$, η(Z+W), M(Z+W), Δη(Z, W), Δ ϕ (Z, W).

Significances for H_5^{\pm} Search

BDT Distribution

$$SS = \sqrt{2[(N_s + N_b)\ln(1 + \frac{N_s}{N_b}) - N_s]}$$
 = Significance1

@FCC-eh, unpol., 1 ab^{-1} Cut-flow table for m(H5) = 600 GeV & $sin\theta = 0.5$

# of events	Signal	Background1	Background2
inital production	260	1.09×10^{4}	1.52×10^{5}
pre-selection	102	751	6442
BDT > 0.189	48	1.7	1.7
Significance1	13.5		
Significance2	12.7		

@ LHeC, unpol., 1 ab^{-1} Cut-flow table for m(H5) = 200 GeV & $sin\theta = 0.5$

# of events	Signal	Background1	Background2
inital production	220	531	3.19×10^{4}
pre-selection	13	11	148
BDT > 0.119	4.9	0.2	0.8
Significance1	3.35		
Significance2	3.32		

with sys. unc. $\sigma_b = 10\% N_b$ $SS = \left[2 \left((N_s + N_b) \ln \frac{(N_s + N_b)(N_b + \sigma_b^2)}{N_b^2 + (N_s + N_b)\sigma_b^2} - \frac{N_b^2}{\sigma_b^2} \ln(1 + \frac{\sigma_b^2 N_s}{N_b(N_b + \sigma_b^2)}) \right) \right]^{1/2} = \text{Significance2}$

"sin θ vs. Mass" contour curve

Limits for H_5^{\pm} Search

Limits at LHeC & FCC-eh

 \rightarrow 10% systematic uncertainty on background included

"production cross section vs. Mass" contour curve

Effects of Electron Beam Polarization

@FCC-eh, **P(e⁻) = +80%**, 1 ab⁻¹ Cut-flow table for m(H5) = 600 GeV & $\sin\theta = 0.5$

# of events	Signal	Background1	Background2
inital production	232	9615	1.16×10^{5}
pre-selection	91	330	3700
BDT > 0.186	43	0.8	1.5
Significance2		13.4	
Significance3	12.8		

@FCC-eh, **P(e⁻) = -80%**, 1 ab⁻¹ Cut-flow table for m(H5) = 600 GeV & $\sin\theta = 0.5$

d2		
10 ⁵		
265		
1.8		
12.4		

Summary

@FCC-eh, **unpolarized**, 1 ab⁻¹ Cut-flow table for m(H5) = $600 \text{ GeV} \& \sin\theta = 0.5$

# of events	Signal	Background1	Background2
inital production	260	1.09×10^{4}	1.52×10^{5}
pre-selection	102	751	6442
BDT > 0.189	48	1.7	1.7
Significance1		13.5	
Significance2	12.7		

Summary

- ★ ep colliders: LHeC, HE-LHeC, FCC-eh
 - → Could be done in parallel to HL-LHC by adding an electron beam to the pp machines, and later also to a High-energy LHC, and FCC-hh
- ★ ep offers a variety of opportunities for BSM searches
 - → Improving pp limits indirectly by improved PDF (@ high and low x)
 - → Direct searches:

Leptoquarks, Contact interactions, Anomalous gauge couplings, Vector boson scattering, BSM top physics, SUSY (RPV & RPC), BSM Higgs, Sterile neutrinos...

- ★ Search for H_5^{\pm} in the GM model at the LHeC & FCC-eh
 - \rightarrow 2 free model parameters M(H₅), sin θ_H ;
 - \rightarrow Production via VBF ;
 - → Final state: 1 e⁻ + 1 j + 1 Z(-> /⁺ /) + 1 W(-> j j) ;
 - \rightarrow Detector-level analysis using the BDT method ;
 - → limits on $\sin \theta_H$ @FCC-eh & LHeC, 1 ab⁻¹, unpol. e⁻ beam
 - → Increasement from electron beam polarization is limited.

Backup Slide

Georgi – Machacek (GM) Model

Scalar sector of the GM model: Using $SU(2)_L \times SU(2)_R$ covariant forms of the fields: complex isospin doublet (ϕ^+, ϕ^0) with hypercharge Y=1; $\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ \phi^- & \phi^0 \end{pmatrix} \quad \Delta = \begin{pmatrix} \chi^0 & \xi^+ & \chi^{++} \\ \chi^- & \xi^0 & \chi^+ \\ \chi^{--} & \xi^- & \chi^0 \end{pmatrix}$ real triplet (ξ^+ , ξ^0 , ξ^-) with Y=0; complex triplet (χ^{++} , χ^{+} , χ^{0}) with Y = 2; \rightarrow Scalar potential is chosen to preserve a global **Signatures** of the five-plet in GM model: $SU(2)_{I} \times SU(2)_{R}$ symmetry [H. Logan, M. Zaro, LHCHXSWG-2015-001] Physical fields under the custodial SU(2) symmetry $v^2 = v_{\Phi}^2 + 8v_{\Lambda}^2$ • Have a common mass $M(H_5)$; 5 - plet (H_{z}^{++}, H_{z}^{+}) H_{z}^{0} (H_{z}^{-}, H_{z}^{-}) $\sin \theta_H = \frac{2\sqrt{2} \, \mathrm{v}_\Delta}{\mathrm{v}}$ Do not couple to fermions; • Tree-level H_5VV interaction; $\cos \theta_H = \frac{v_{\Phi}}{v_H}$ 3 - plet H_3^+, H_3^0, H_3^- Production via VBF; • $g(H_5VV) \propto \sin \theta_H$ mixing : $\theta_{\rm H}$ $\Rightarrow \sigma(VBF \rightarrow H_5) \propto \sin^2 \theta_H;$ • BR $(H_5^{\pm} \rightarrow W^{\pm}Z) \approx 100\%$; singlet H^{'0} $BR(H_5^{\pm\pm} \to W^{\pm}W^{\pm}) \approx 100\%$ mixing : α -• 2 free pars. $M(H_5)$, $\sin \theta_H$. singlet H⁰ **125GeV Higgs** 15