Aspects of Non-minimal SUSY phenomenology.

Philip Diessner

Fellow Day '17

Hamburg, 12.12.17

Personal

- > Last Fellow day: 31.10.16
- > Arrival in Hamburg: 01.11.16
- > So, just starting 🙂

Diplom and PhD at TU Dresden with Dominik Stöckinger Floated down the Elbe to DESY

Personal

Diplom and PhD at TU Dresden with Dominik Stöckinger Floated down the Elbe to DESY MSSM is appealing from theory side:

- > Hierarchy problem
- > Gauge coupl. unific.
- > REWSB
- > DM candidate

What about SUSY?

MSSM didn't light up LHC experiments

A.	ATLAS Preliminary								
	Model	ε, μ, τ, γ	Jets	E_T^{min}	' ∫ζ ejn	"I Mass limit	$\sqrt{T} = 7$	TeV Vot 13 TeV	Reference
Anotasive Se arches	MSUGDA_CMSSM 49.44 ² , (sumpressed) 49.84 ² , (sumpressed) 49.84 ⁴ , (sumpressed) 49.84 ⁴ , (sumpressed) 49.84 ⁴ , (sumpressed) 6.84 ⁴ , (sumpressed) 6.64 ⁴ , (sumpressed) 6.74 ⁴ , (sumpressed)	03e,µ112r 0 matojet 0 3e,µ 0 12r+011 2 7 2e,µ(2) 0	2 10 jets/2 24 jets 14 jets 24 jets 24 jets 4 jets 7-11 jets 02 jets 2 jets 2 jets mano-jet	i Vina Vina Vina Vina Vina Vina Vina Vina	20.3 36.1 36.1 36.1 36.1 36.1 22 20.3 12.3 20.3 20.3 20.3	94 690 GAY 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.35 TeV 1.57 TeV 2.02 TeV 2.85 TeV 1.85 TeV 1.8 TeV 1.65 TeV 1.92 TeV 1.9 TeV	$\begin{array}{l} m_{12}^{(0)} m_{22}^{(0)} \\ m_{11}^{(0)} (2000 \mathrm{et}(m_{1}^{(0)} \mathrm{gm} q_{2}^{(0)} \mathrm{em} q_{2}^{(0)} \mathrm{em} q_{2}^{(0)} \mathrm{em} q_{2}^{(0)} \mathrm{em} \mathrm$	1827-0828 ALLAS COMP 1817-023 NOACOTP 217-023 ALLAS COMP 2817-023 ALLAS COMP 2817-023 ALLAS COMP 2817-023 NOACOTP 2817-023 NOACOTP 2817-023 NOACOTP 2817-023 NOACOTP 2817-023 NOACOTP 2817-023 NOACOTP 2817-025 NOACOTP 2817-025 NO
Loon 2	$\begin{array}{c} \underline{t}b, \underline{t} \rightarrow idd_{1}^{0} \\ \underline{t}b, \underline{t} \rightarrow idd_{1}^{0} \\ \underline{t}b, \underline{t} \rightarrow idd_{1}^{0} \end{array}$	0 01 <i>r.µ</i> 01 <i>r.µ</i>	2.5 2.5 2.5	Yos Yos Yos	26.1 26.1 20.1	2 2 2	1.82 TeV 1.97 TeV 1.37 TeV	ක(ර්.) - 600 DeV ක(ර්.) - 300 DeV ක(ර්.) - 300 DeV	ATLK8-COMP-2017-021 ATLK8-COMP-2017-021 1407-0400
A" per sparie d'exproduzio	$\begin{array}{l} \delta_{1} \delta_{2} = \delta_{1} - \delta_{1} \delta_{1}^{2} \\ \delta_{2} \delta_{3} = \delta_{1} - \delta_{1} \delta_{1}^{2} \\ \delta_{3} \delta_{1} = -\delta_{1} \delta_{1}^{2} \\ \delta_{3} \delta_{1} = -\delta_{1} \delta_{1}^{2} \\ \delta_{3} \delta_{1} = \delta_{1} - \delta_{1}^{2} \\ \delta_{3} \delta_{1} = \delta_{1} - \delta_{1}^{2} \\ \delta_{3} \delta_{1} = \delta_{2} - \delta_{1}^{2} \\ \delta_{3} \delta_{1} = \delta_{1} - \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{1} - \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{1} \\ \delta_{3} \delta_{1} = \delta_{2} \\ \delta_{3} \delta_{1} = \delta_{$	0 2 n. µ (55) 0 2 n. µ 0 2 n. µ 0 2 n. µ (2) 3 n. µ (2) 1 2 n.µ	2.b 1.b 1.2.b 0.2.jets:1.2 mano-jet 1.b 1.b 4.b	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26.1 26.1 4.7(12.3 20.3(26.1 3.2 20.3 26.1 26.1 26.1	N SSC GW 117-120 GW 225-120 GW 5 56-130 GW 5 325-130 GW 5 325-880 GW		40)-000 40)-2000 (40)-000 40)-2000 (40)-000 40)-2007 40)-1007 40)-1007 40)-1007 40)-007 40)-007 40)-007	ATLK8-COAP-3017-038 ATLK8-COAP-3017-030 T308-333, ATLK8-COAP-3017-030 1306-38876, ATLK8-COAP-3017-030 1806-0777 1803-8202 ATLK8-COAP-3017-018 ATLK8-COAP-3017-018
EW direct	$\begin{array}{l} l_{\perp,0} l_{\perp,0}^{-}, l \rightarrow Gl_{\perp}^{2} \\ \mathcal{X}[\mathcal{X}], \mathcal{X}] \rightarrow b(\mathcal{O}) \\ \mathcal{X}[\mathcal{X}], \mathcal{X}] \rightarrow b(\mathcal{O}) \\ \mathcal{X}[\mathcal{X}]_{\perp}^{2} \mathcal{X}]_{\perp}^{2} \rightarrow G(\mathcal{O}), \mathcal{X}[\mathcal{X}]_{\perp}^{2} \rightarrow d(\mathcal{O}) \\ \mathcal{X}[\mathcal{X}]_{\perp}^{2} \mathcal{X}]_{\perp}^{2} \rightarrow G(\mathcal{O}), \mathcal{X}[\mathcal{X}]_{\perp}^{2} \rightarrow d(\mathcal{O}) \\ \mathcal{X}[\mathcal{X}]_{\perp}^{2} \rightarrow \mathcal{H}[\mathcal{X}], \mathcal{X}[\mathcal{A}], \mathcal{A}(\mathcal{A}, \mathcal{O}), \mathcal{A}(\mathcal{A}, \mathcal{O}) \\ \mathcal{X}[\mathcal{X}]_{\perp}^{2} \rightarrow \mathcal{H}[\mathcal{X}], \mathcal{X}]_{\perp}^{2} \rightarrow d(\mathcal{O}) \\ \mathcal{X}[\mathcal{X}]_{\perp}^{2} \rightarrow \mathcal{H}[\mathcal{X}], \mathcal{X}]_{\perp}^{2} \rightarrow d(\mathcal{A}, \mathcal{O}) \\ \mathcal{X}[\mathcal{X}]_{\perp}^{2} \rightarrow \mathcal{H}[\mathcal{X}], \mathcal{X}]_{\perp}^{2} \rightarrow \mathcal{H}[\mathcal{A}], \mathcal{A}(\mathcal{A}) \\ \mathcal{G}(\mathcal{A}) \ (\text{bion NLSP) weak pool. , \mathcal{I}_{\perp}^{2} \\ \mathcal{G}(\mathcal{A}) \ (\text{bion NLSP) weak pool. , \mathcal{I}_{\perp}^{2} \end{array}$	2 κ.μ 2 κ.μ 2 τ 2 τ 2 δ.μ κ.μ.γ 4 κ.μ τη G 2 γ	0 0 02 jets 02 jets 0 2 jets 0		26.1 26.1 26.1 26.1 20.3 20.3 20.3 20.3 20.3	I S0-640 GeV 710 GeV I ² 710 GeV 710 GeV I ² 710 GeV 510 GeV I ² 710 GeV 580 GeV	 40	ad()=0 ad()=0, ad()=0,00000()=ad()) ad()=0,00000(0)=ad()) ad()=0,00000()=ad()=0,0000() ad()=0,00()=0,0000()=ad()=0,0000() ad()=0,00()=0,0000()=ad()=0,0000() ad()=0,000()=0,0000()=ad()=0,0000() ad()=0,000()=0,0000()=ad()=0,0000() ad()=0,000()=0,0000()=ad()=0,0000() ad()=0,000()=0,0000()=ad()=0,0000() ad()=0,000()=0,000()=0,000() ad()=0,000()=0,000()=0,000() ad()=0,000()=0,000()=0,000() ad()=0,000()=0,000()=0,000() ad()=0,000()=0,000()=0,000() ad()=0,000()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000()=0,000() ad()=0,000(ATLAS COMP 3017 608 ATLAS COMP 3017 608 1801 0713 1503 6080 1807 0680
Long-Field particites	$\begin{array}{l} \text{Direct} \left\{ {{}^{*}_{1}} \right\} \text{prod.} \left[\log q \log 1 \right]_{1}^{n} \\ \text{Direct} \left\{ {{}^{*}_{1}} \right\} \text{prod.} \left[\log q \log 1 \right]_{1}^{n} \\ \text{Stable, respect of P hadron $Stable p P hadron $Stable p P hadron $GMS0, axis n if $- ety_{1}, p(e+r(e, p) $GMS0, $x_{1}^{n} = -y_{1}, p(e+r(e, p) $GMS0, $x_{1}, p(e+r(e, p) $GMS0, $	Disago, tik dEida tik 0 58 dEida tik 12 µ 2 y dispi. or/oy/y dispi. vtx + je	1 jet 1 6 jets	Yes Yes Yes Yes	36.1 18.4 27.9 2.2 18.1 20.3 20.3 20.3	All All GeV 2" 485 GeV 2 637 GeV 2 637 GeV 2" 480 GeV 2" 480 GeV 2" 1.0 TeV 2" 1.0 TeV 2" 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} & m_{1}^{2}(\gamma,m_{1}^{2}(\gamma,m_{2}^{2}(\gamma,m_{1}^{2}(\gamma,m_{2}^{2}(\gamma,$	ATLAR-COMP-VET-PETT TIDE MARK TIDE MARK 1980 (2012) 1981 (2012) 1981 (2012) 1981 (2012) 1983 (2012) 1984 (2012) 1984 (2012)
ABA	$\begin{split} & LFV p_{0} - hr \in X, b - exp(or)pri \\ & Biloner SPV CMSSBI \\ & Biloner SPV CMSSBI \\ & F_{1}^{+}(z, \bar{z}) - eW_{2}^{+}, \bar{Z}_{1}^{-} - arr, pric, pric \\ & F_{1}^{+}(z, \bar{z}) - eW_{2}^{+}, \bar{Z}_{1}^{-} - arr, \\ & \bar{z}, $	ομιστρο 2 κ.μ (55) 4 κ.μ 3 κ.μ + τ 0 4 1 κ.μ 5 1 κ.μ 5 0 2 κ.μ	- 0-23 - - - - - - - - - - - - - - - - - -	Visa Visa Visa HIS - HIS - Li - Li - Li -	32 203 123 203 148 148 361 361 154 361	n 2	1.8 TeV 1.45 TeV TeV 1.55 TeV 2.1 Te 1.45 TeV	$\begin{split} & \mathcal{S}_{_{21}}(d;1), \mathcal{S}_{_{21}(1)(1)}(d;2) \\ & \approx [2](d;2], \exp(1+1)(d;1), \exp(2+1)(d;2), \exp(2+1)(d;2),$	1827/06/19 1342/300 AFLR0-CORP-0216-073 3183-808 AFLR0-CORP-0216-087 AFLR0-CORP-0216-087 AFLR0-CORP-0216-087 AFLR0-CORP-0217-013 AFLR0-CORP-0217-013 AFLR0-CORP-0216-061 AFLR0-CORP-0216-061
Other	Scalar chann, 2-will	ů.	2.0	Yes	20.3	> \$10 Gw		m(\$ ²)+200 DeV	1901.01339
"Only phile	a selection of the available m omena is shown. Many of the	usa limita on i limita are ba	new state used on	18 01	1	0-1	1	Mass scale [TeV]	

Full model

- > Look into non-minimal models for spectrum of alternative predictions
- > Containing features maybe missing in simplified models

Full model

- > Look into non-minimal models for spectrum of alternative predictions
- > Containing features maybe missing in simplified models
- > For my PhD: R-Symmetry
 - Includes solution to flavor problem of the MSSM
 - Dirac gauginos (esp. gluino) might explain SUSY non-discovery
 - Extended Higgs sector, different predictions than (N)MSSM

- > Go calculate all interesting things!
- > Community has decades of experience studying BSM physics
- > In the last years, big efforts to generalize codes and availability see e.g. hepforge.org 1
- > Straight-forward application to full models?

¹FlexibleSUSY, SARAH/SPheno, HiggsBounds, HiggsSignals, micrOMEGAs. Herwig++. CheckMATE. GoSam. Madgraph aMC

- > Go calculate all interesting things!
- > Community has decades of experience studying BSM physics
- > In the last years, big efforts to generalize codes and availability see e.g. hepforge.org 1
- > Straight-forward application to full models?
- > Yes, if MSSM. Otherwise a bit work required.

¹FlexibleSUSY, SARAH/SPheno, HiggsBounds, HiggsSignals, micrOMEGAs. Herwig++. CheckMATE. GoSam. Madgraph aMC

R-symmetry

- > Additional symmetry allowed by SUSY algebra described in "Haag-Łopuszański-Sohnius-Theorem"
- > For N = 1 SUSY it is a global $U(1)_{\mathsf{R}}$ symmetry \rightarrow charged Spinor coordinates: $Q_{\mathsf{R}}(\theta) = 1$, $Q_{\mathsf{R}}(\bar{\theta}) = -1$; $(\theta \rightarrow e^{i\alpha}\theta, \bar{\theta} \rightarrow e^{-i\alpha}\bar{\theta})$
- > Lagrangian has to be invariant
- > SM fields have $Q_{R} = 0$
- > SUSY partners carry charge (MRSSM Kribs et.al. (Phys.Rev. D78 (2008) 055010))
- > Forbids Majorana mass terms and A terms

Assume R-symmetry to be unbroken.

Adding to the MSSM

		$SU(3)_C$	$SU(2)_L$	$U(1)_{Y}$	$U(1)_{R}$
Singlet	Ŝ	1	1	0	0
Triplet	Ť	1	3	0	0
Octet	Ô	8	1	0	0
R-Higgses	\hat{R}_u	1	2	-1/2	2
	\hat{R}_d	1	2	1/2	2

Particles of the MRSSM

Mass spectrum

Aspect one: 125 GeV Higgs boson

Known from MSSM: Loop contributions important

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{6v_u^2}{16\pi^2} \left[Y_t^4 \log \frac{m_{\tilde{t}_1}m_{\tilde{t}_2}}{m_t^2} \right]$$

Aspect one: 125 GeV Higgs boson

Known from MSSM: Loop contributions important

 $\Lambda_{\rm m}$

> Extended Higgs sector: What about a lighter Higgs boson?

- > Extended Higgs sector: What about a lighter Higgs boson?
- > Dark matter candidate in model

- > Extended Higgs sector: What about a lighter Higgs boson?
- > Dark matter candidate in model
- > LHC searches for electroweak sparticles

- > Extended Higgs sector: What about a lighter Higgs boson?
- > Dark matter candidate in model
- > LHC searches for electroweak sparticles
- > NLO production of squarks

- > Extended Higgs sector: What about a lighter Higgs boson?
- > Dark matter candidate in model
- > LHC searches for electroweak sparticles
- > NLO production of squarks

Model parameter space non-trivially constrained but still allowed regions

- > How do MRSSM squarks and gluinos do at the LHC?
- > Using G_{μ} as model input, M_W is a prediction of a model Low uncertainty on measurement and SM prediction \Rightarrow Add BSM (not only MRSSM) correctly and with low uncertainty

- > How do MRSSM squarks and gluinos do at the LHC?
- > Using G_{μ} as model input, M_W is a prediction of a model Low uncertainty on measurement and SM prediction \Rightarrow Add BSM (not only MRSSM) correctly and with low uncertainty

Thanks for the attention!

