## **Anomalies and Expectations: An Express Overview**

**Ayan Paul** 

DESY, Hamburg

Institut für Physik, Humboldt-Universität zu Berlin



HUMBOLDT-UNIVERSITÄT ZU BERLIN



Hamburg. December 12<sup>th</sup> 2017.

## **On Charm:**

## I know she invented fire, but what has she done recently?

Ikaros I. Bigi

#### what are we looking at?

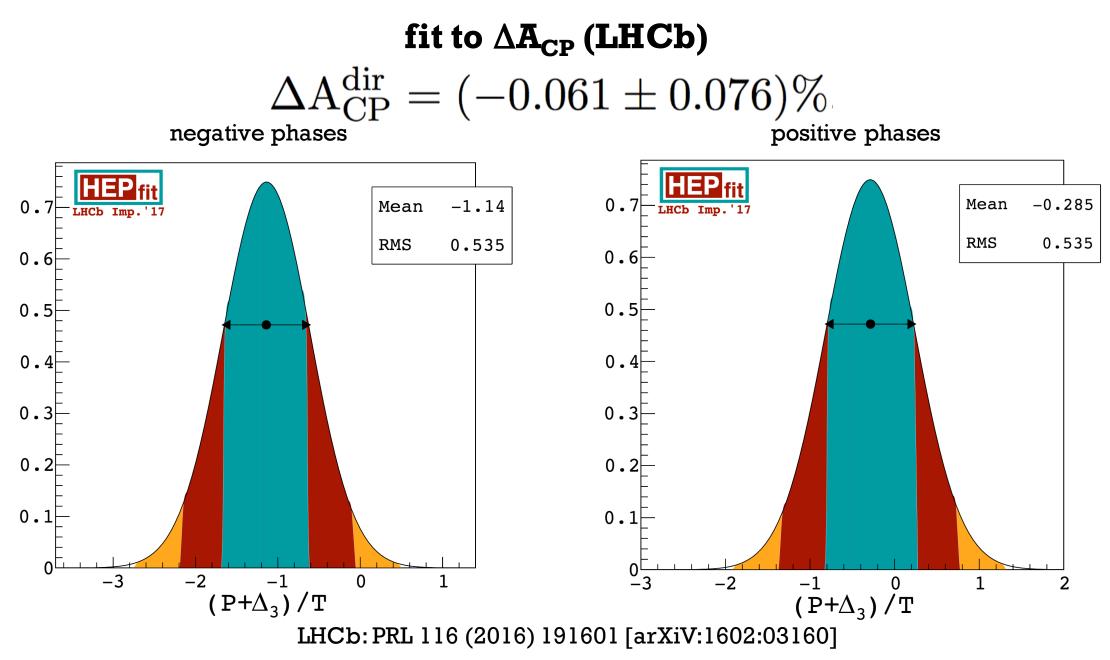
 $D^0$ ,  $D^+$  and  $D_s^+$  with  $\pi$ , K in the final states

|                         | $\mathbf{SCS}$                           |                   | CA & DCS            |                        |                         |  |  |  |  |
|-------------------------|------------------------------------------|-------------------|---------------------|------------------------|-------------------------|--|--|--|--|
| Channel                 | el Fit $(\times 10^{-3})$ Exp. $(\times$ |                   | Channel             | Fit $(\times 10^{-3})$ | Exp. $(\times 10^{-3})$ |  |  |  |  |
| $D^0 \to \pi^+ \pi^-$   | $1.42\pm0.03$                            | $1.421 \pm 0.025$ | $D^+ \to \pi^+ K_S$ | $15.71 \pm 0.41$       | $15.3\pm0.6$            |  |  |  |  |
| $D_0^+ \to \pi^0 \pi^0$ | $0.82\pm0.04$                            | $0.826 \pm 0.035$ | $D^+ \to \pi^+ K_L$ | $14.25\pm0.38$         | $14.6\pm0.5$            |  |  |  |  |
| $D^+ \to \pi^+ \pi^0$   | $1.25\pm0.06$                            | $1.24\pm0.06$     | $D^0 \to \pi^+ K^-$ | $39.40\pm0.40$         | $39.3\pm0.4$            |  |  |  |  |
| $D^0 \to K^+ K^-$       | $3.95\pm0.06$                            | $4.01\pm0.07$     | $D^0 \to \pi^0 K_S$ | $12.14\pm0.33$         | $12.0\pm0.4$            |  |  |  |  |
| $D^0 \to K_S K_S$       | $0.17\pm 0.04$                           | $0.18\pm0.04$     | $D^0 \to \pi^0 K_L$ | $9.57\pm0.27$          | $10.0\pm0.7$            |  |  |  |  |
| $D^+ \to K^+ K_S$       | $3.06\pm0.13$                            | $2.95\pm0.15$     | $D_s^+ \to K^+ K_S$ | $14.80\pm0.49$         | $15.0\pm0.5$            |  |  |  |  |
| $D_s^+ \to \pi^0 K^+$   | $1.05\pm0.16$                            | $0.63\pm0.21$     | $D^+ \to \pi^0 K^+$ | $0.128\pm0.012$        | $0.189 \pm 0.025$       |  |  |  |  |
| $D_s^+ \to \pi^+ K_S$   | $1.22\pm0.06$                            | $1.22\pm0.06$     | $D^0 \to \pi^- K^+$ | $0.141 \pm 0.003$      | $0.139 \pm 0.0027$      |  |  |  |  |

| $A_{\rm CP} (D^0)$    | $(\mu \pm c$       | r) (%)              | $A_{\rm CP} (D^+_{(s)})$ | $(\mu \pm \sigma)$ (%)      |                              |  |  |  |  |
|-----------------------|--------------------|---------------------|--------------------------|-----------------------------|------------------------------|--|--|--|--|
|                       | $\delta_i \to -ve$ | $\delta_i \to + ve$ | $MCP(D_{(s)})$           | $\delta_i \to -\mathrm{ve}$ | $\delta_i \to + \mathrm{ve}$ |  |  |  |  |
| $D^0 \to \pi^+ \pi^-$ | $0.043 \pm 0.054$  | $0.045 \pm 0.055$   | $D^+ \to K^+ K_S$        | $-0.012 \pm 0.014$          | $-0.010 \pm 0.014$           |  |  |  |  |
| $D^0 \to \pi^0 \pi^0$ | $-0.019 \pm 0.026$ | $0.056 \pm 0.030$   | $D_s^+ \to \pi^+ K_S$    | $0.015\pm0.018$             | $0.013 \pm 0.018$            |  |  |  |  |
| $D^0 \to K^+ K^-$     | $-0.018 \pm 0.022$ | $-0.016 \pm 0.022$  | $D_s^+ \to \pi^0 K^+$    | $-0.045 \pm 0.017$          | $0.021 \pm 0.018$            |  |  |  |  |
| $D^0 \to K_S K_S$     | $0.019\pm0.021$    | $0.012 \pm 0.024$   |                          |                             |                              |  |  |  |  |

FIT

PREDICTION


#### hence we need a parameterization...

the weak Hamiltonian:

$$\mathcal{H}_{w} = \frac{G_{F}}{\sqrt{2}} V_{ud} V_{cd}^{*} \left[ C_{1} Q_{1}^{d} + C_{2} Q_{2}^{d} \right] + \frac{G_{F}}{\sqrt{2}} V_{us} V_{cs}^{*} \left[ C_{1} Q_{1}^{s} + C_{2} Q_{2}^{s} \right] - \frac{G_{F}}{\sqrt{2}} V_{ub} V_{cb}^{*} \sum_{i=3}^{6} C_{i} Q_{i} + h.c$$

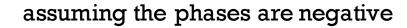
the operator basis:

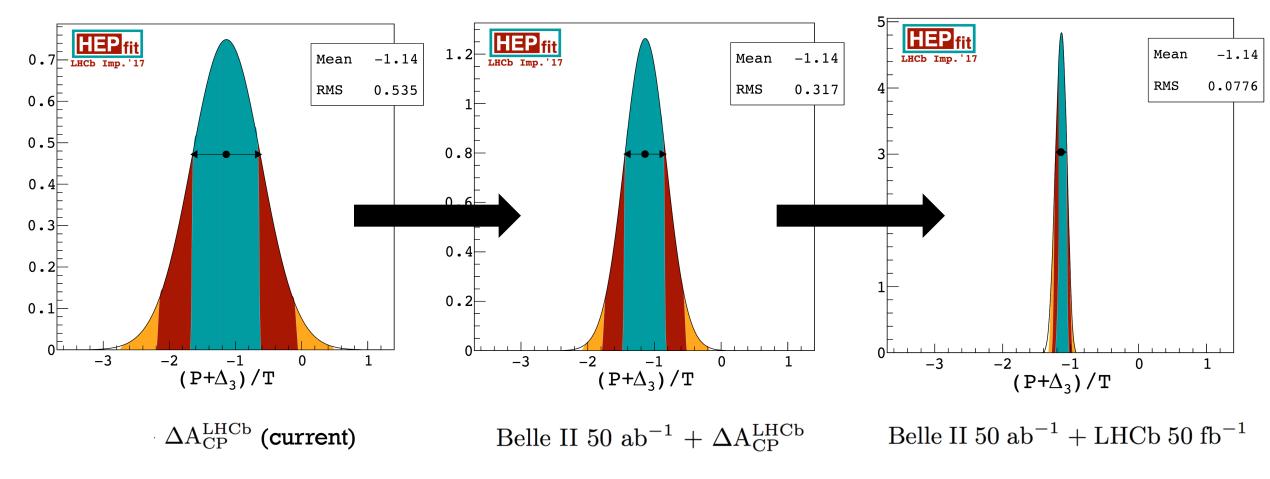
weak amplitude + rescattering + small  $SU(3)_f$  breaking amplitudes



Ayan Paul -- DESY Theory: Fellow's Meeting 2017

### future prospects


|                       |             | RMS (%)     |                      |                  |                    |  |  |  |  |  |
|-----------------------|-------------|-------------|----------------------|------------------|--------------------|--|--|--|--|--|
| $A_{CP}(channel)$     | mode $(\%)$ | Current Fit | Belle II             | LHCb             |                    |  |  |  |  |  |
|                       |             |             | $50 \text{ ab}^{-1}$ | $5~{ m fb}^{-1}$ | $50 { m ~fb^{-1}}$ |  |  |  |  |  |
| $D^0 \to \pi^+ \pi^-$ | 0.043       | 0.054       | 0.05                 | _                | —                  |  |  |  |  |  |
| $D^0 \to \pi^0 \pi^0$ | -0.020      | 0.026       | 0.09                 | —                | —                  |  |  |  |  |  |
| $D^0 \to K^+ K^-$     | -0.018      | 0.022       | 0.03                 | —                | —                  |  |  |  |  |  |
| $D^0 \to K_S K_S$     | 0.019       | 0.021       | 0.17                 | —                | —                  |  |  |  |  |  |
| $D^+ \to K^+ K_S$     | -0.011      | 0.014       | 0.05                 | —                | _                  |  |  |  |  |  |
| $D_s^+ \to \pi^+ K_S$ | 0.014       | 0.018       | 0.29                 | —                | _                  |  |  |  |  |  |
| $\Delta A_{CP}$       | -0.061      | _           | —                    | 0.05             | 0.01               |  |  |  |  |  |


-- fit predictions from  $\Delta A_{CP}$  have comparable or smaller errors than what Belle II will probe with 50 ab<sup>-1</sup>

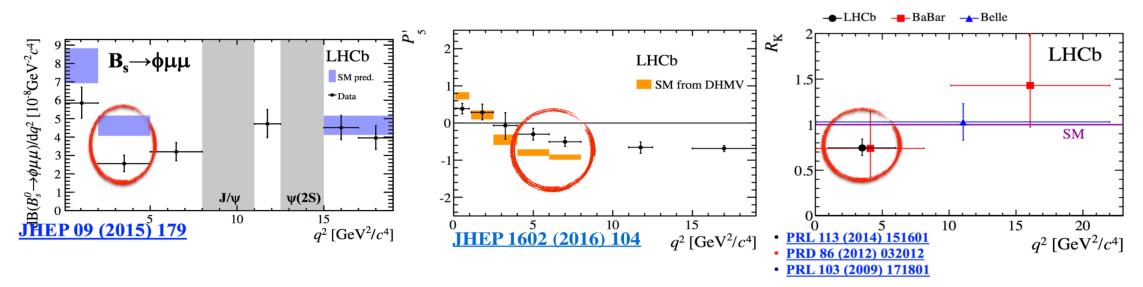
-- predicted errors do not depend on the sign of the phases

-- hence predicted errors do not depend on the size of  $(P+\Delta_3)/T$  but only on the precision with which it can be determined.

#### Measurement of $(P+\Delta_3)/T$






## **On Beauty:**

## Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.

Samuel Beckett Worstward Ho! No tree-level flavour changing neutral currents (FCNC) in the Standard Model (SM).

New Physics (NP) may sizably contribute in <u>FCNC amplitudes</u> E.g.: b to s II transitions

INTRIGUING SET OF "ANOMALIES" IN DATA OF EXCLUSIVE B RARE DECAYS



#### $\sim 3.5 \sigma$

Angular analysis of  $B \longrightarrow K^* \mu \mu$  for small dilepton mass,  $4 < q^2 / \text{GeV}^2 < 8$ .

 $\sim 2.5 \sigma$ 

 $R_{K^{(*)}} = Br(B \longrightarrow K^{(*)}ee) / Br(B \longrightarrow K^{(*)}\mu\mu) + Br \text{ of other modes (e.g. } B_s \longrightarrow \phi\mu\mu).$ 

In the helicity basis, B —> V(P)  $\ell^+\ell^-$  amplitude can be decomposed as:

$$\begin{split} H^{(V)}_{\lambda}(q^2) &\propto C_9 \,\tilde{V}_{\lambda}(q^2) + 2 \frac{m_b m_B}{q^2} C_7 \,\tilde{T}_{\lambda}(q^2) - 16\pi^2 \frac{m_B^2}{q^2} \tilde{h}_{\lambda}(q^2) \,, \\ H^{(A)}_{\lambda}(q^2) &\propto C_{10} \,\tilde{V}_{\lambda}(q^2) \,, \\ H^{(P)}(q^2) &\propto 2 \frac{m_\ell m_B}{q^2} C_{10} \, \left(1 + \frac{m_s}{m_b}\right) \tilde{S}(q^2) \,. \end{split}$$
Building blocks to compute Angular Obs & Br of interest! 
$$(\lambda = 0, \pm) \end{split}$$

At first order in  $\alpha_{em}$  we can get a contribution from current-current quark operators & QCD penguins.

-> "hadronic" amplitude contributing to the process:

$$\overline{B} \bigcirc \overline{V}(\overline{P})$$

κl

$$\tilde{h}_{\lambda}(q^2) \sim \epsilon_{\lambda,\mu} \int d^4x \, e^{iqx} \langle \overline{V}(\overline{P}) | T\{J^{\mu,e.m.}_{had}(x) \mathcal{H}^{eff}_{had}(0)\} | \overline{B} \rangle$$

Loop suppressed amplitude can be enhanced by non-perturbative QCD effects!

In particular, charm current-current insertion not further parametrically suppressed.

$$\frac{d^{(4)}\Gamma}{dq^2 d(\cos\theta_l)d(\cos\theta_k)d\phi} = \frac{9}{32\pi} \begin{pmatrix} I_1^* \sin^2\theta_k + I_1^c \cos^2\theta_k + (I_2^* \sin^2\theta_k + I_2^c \cos^2\theta_k) \cos 2\theta_l \\ + I_3 \sin^2\theta_k \sin^2\theta_l \cos 2\phi + I_4 \sin 2\theta_k \sin 2\theta_l \cos \phi \\ + I_5 \sin 2\theta_k \sin \theta_l \cos \phi + (I_6^* \sin^2\theta_k + I_6^c \cos^2\theta_K) \cos \theta_l \\ + I_7 \sin 2\theta_k \sin \theta_l \sin \phi + I_8 \sin 2\theta_k \sin 2\theta_l \sin \phi \\ + I_9 \sin^2\theta_k \sin^2\theta_l \sin 2\phi \end{pmatrix}$$

$$8 \text{ CP-AVERAGED OBSERVABLES}$$

$$F_L, A_{FB}, S_{3,4,5,7,8,9}$$

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}} \iff 0 \text{ Optimized" observables } \dots \text{ ``clean" only in HQ/LE limit!} \\ Matias, J. et al. `12 \\ Conservative EVALUATION RELYING ON \\ LCSR RESULT ONLY FOR q^2 \lesssim 1 \text{ GeV}^2$$

$$15 \text{ Optimized } \text{ SM@HEPfit} \text{ ``LHCb 2015} \\ 15 \text{ Optimized } \text{ ``sM@HEPfit} \text{ ``LHCb 2015} \\ 15 \text{ ``Job} \text{$$



8

-0.5

-1.0

-1.5L

 $q^2 [GeV^2]$ 

6

2

1

-0.5

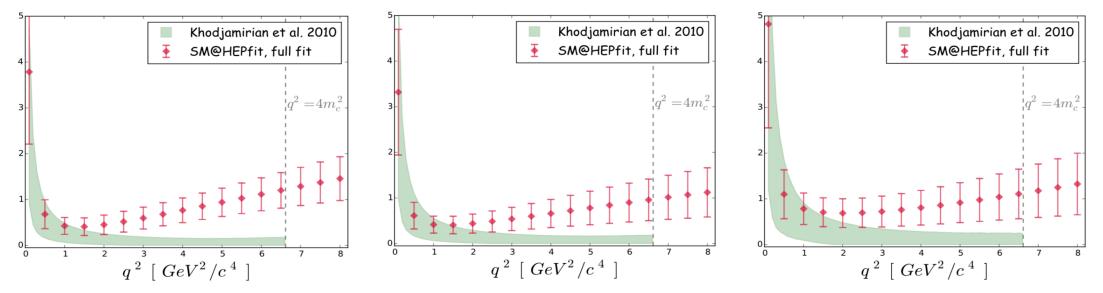
-1.0

-1.5L

 $q^2 [GeV^2]$ 

2

1


6

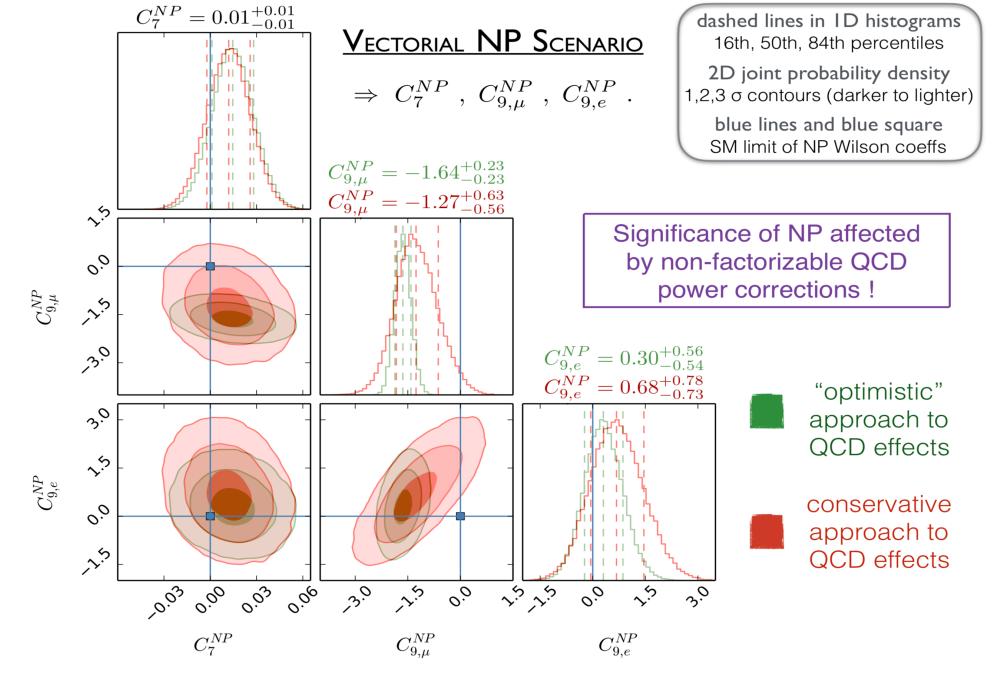
7

8

7

Examining the size of the hadronic contributions in terms of  $\Delta C_9$  shifts:




--> red points corresponds to the long distance effect extracted from our fit

--> green band is the charm-loop effect as given in JHEP 1009 (2010) 089



 SIZABLE DEPARTURE FROM THE THEORETICAL ESTIMATE BASED ON EXTRAPOLATED LCSR CC-LOOP IN SINGLE SOFT GLUON APPROX.

2) q<sup>2</sup> DEPENDENCE @ ODD WITH SHORT DISTANCE RE-INTERPRETATION. OUR RESULT POINTS TO UNDERESTIMATED HADRONIC EFFECTS.



Ayan Paul -- DESY Theory: Fellow's Meeting 2017

# **On the Higgs:**

DESY Theory: Fellow's Meeting 201

#### two paths to the throne

-- find a new degree of freedom --

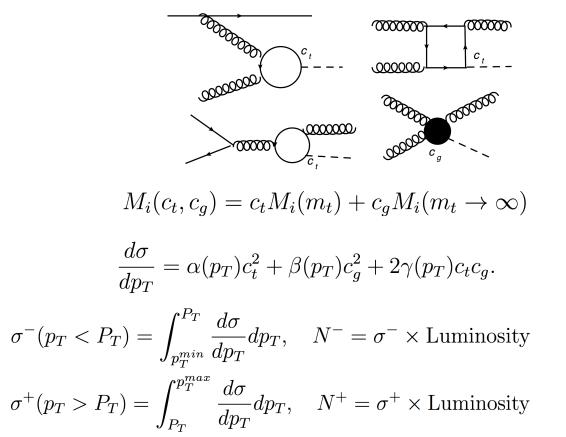
-- find a modified coupling --



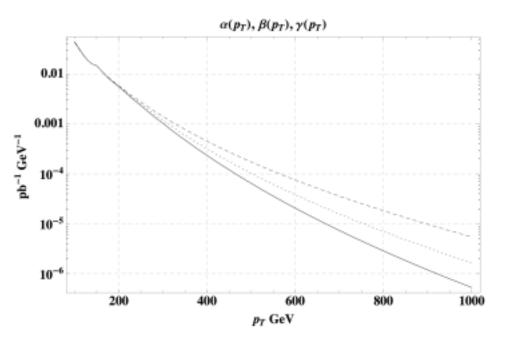
RECEIVED: October 3, 2013 ACCEPTED: December 14, 2013 PUBLISHED: January 7, 2014

# Probing Higgs couplings with high $p_T$ Higgs production

#### Aleksandr Azatov<sup>*a,b*</sup> and Ayan Paul<sup>*b*</sup>

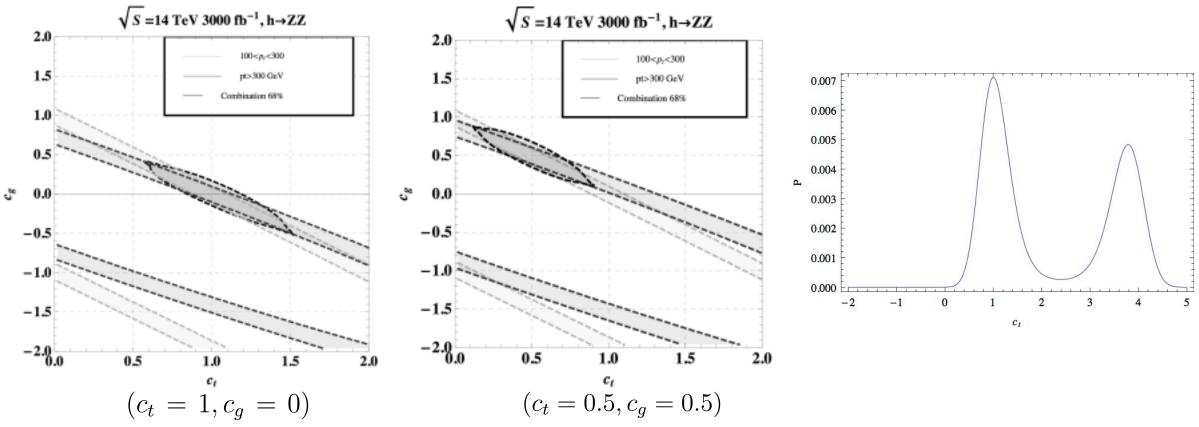

 <sup>a</sup> Dipartimento di Fisica, Università di Roma "La Sapienza", 00185 Rome, Italy
 <sup>b</sup>INFN — Sezione di Roma, 00185 Rome, Italy

E-mail: aleksandr.azatov@roma1.infn.it, ayan.paul@roma1.infn.it


#### the idea

$$\frac{d\sigma}{dp_T} = \sum_i \kappa_i |f^i(p_T)c_t + c_g|^2 \longrightarrow \left(\frac{d\sigma^{SM}(m_t)}{dp_T}\right) / \left(\frac{d\sigma^{SM}(m_t \to \infty)}{dp_T}\right) = \frac{\sum_i \kappa_i f^i(p_T)^2}{\sum_i \kappa_i}$$

Higgs production with an associated jet is driven by:




$$\left(\frac{d\sigma^{SM}(m_t)}{dp_T}\right) / \left(\frac{d\sigma^{SM}(m_t \to \infty)}{dp_T}\right)|_{p_T = 300 \text{GeV}} \sim 0.7$$

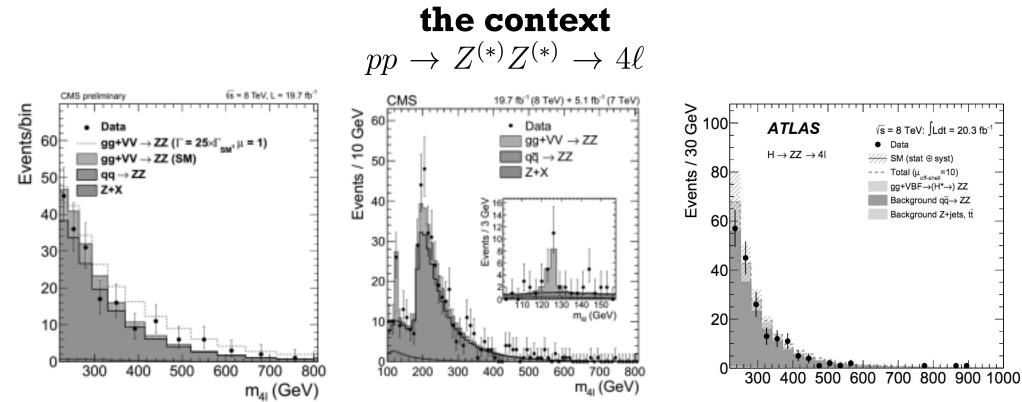


R. K. Ellis, I. Hinchliffe, M. Soldate and J. J. van der Bij, Nucl. Phys. B 297, 221 (1988).
U. Baur and E. W. N. Glover, Nucl. Phys. B 339, 38 (1990).

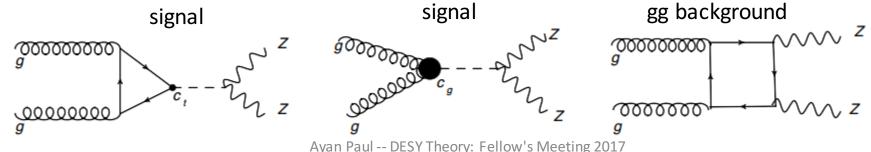
#### the outcome



✓ We gauge LHC potential by looking into the  $h \to ZZ^* \to l^-l^-l^+l^+$  channel.


- $\checkmark$  We separate the events into a low and a high  $p_T$  bins 300 GeV as the discriminating  $p_T$ .
- ✓ We get a  $c_t$  [0.66, 1.42] at 68% CL from our naïve estimate.

### Taming the Off-Shell Higgs Boson<sup>1</sup>

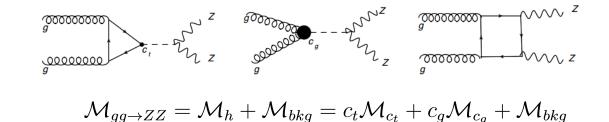

A. Azatov<sup>a,\*</sup>, C. Grojean<sup>b,\*\*</sup>, A. Paul<sup>c,\*\*\*</sup>, and E. Salvioni<sup>d,\*\*\*\*</sup> <sup>a</sup> Theory Division, Physics Department, CERN, Geneva 23, CH-1211 Switzerland <sup>b</sup> ICREA at IFAE, Universitat Autonoma de Barcelona, Bellaterra, E-08193 Spain <sup>c</sup> INFN, Sezione di Roma Rome, I-00185 Italy <sup>d</sup> Physics Department, University of California, Davis, CA 95616 USA <sup>\*</sup>e-mail: Aleksandr.Azatov@cern.ch <sup>\*\*</sup>e-mail: Christophe.Grojean@cern.ch <sup>\*\*\*</sup>e-mail: Ayan.Paul@roma1.infn.it <sup>\*\*\*\*</sup>e-mail: esalvioni@ucdavis.edu Received July 22, 2014

Abstract—We study the off-shell Higgs data in the process  $pp \rightarrow h^{(*)} \rightarrow Z^{(*)}Z^{(*)} \rightarrow 4l$ , to constrain deviations of the Higgs couplings. We point out that this channel can be used to resolve the long- and short-distance contributions to Higgs production by gluon fusion and can thus be complementary to  $pp \rightarrow ht\bar{t}$  in measuring the top Yukawa coupling. Our analysis, performed in the context of effective field theory, shows that current data do not allow drawing any model-independent conclusions. We study the prospects at future hadron colliders, including the high-luminosity LHC and accelerators with higher energy, up to 100 TeV. The available QCD calculations and the theoretical uncertainties affecting our analysis are also briefly discussed.

#### Contribution for the JETP special issue in honor of V.A. Rubakov's 60th birthday



- there is an invisible Higgs decay width, so that the total width of the Higgs and its couplings can be varied independently
- $\checkmark$  variations of all the Higgs couplings are universal
- $\checkmark$  there are no higher dimensional operators affecting either Higgs decay or production




#### the idea

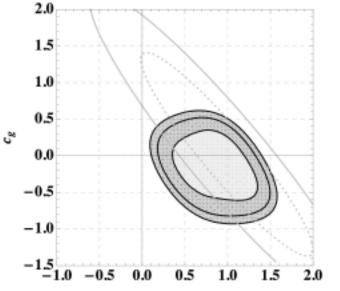
- $\checkmark$  There is no invisible Higgs decay width.
- $\checkmark$  There are dim. 6 operators affecting Higgs production.

$$\mathcal{L}^{\dim -6} = c_y \frac{y_t |H|^2}{v^2} \bar{Q}_L \tilde{H} t_R + \text{h.c.} + \frac{c_g g_s^2}{48\pi^2 v^2} |H|^2 G_{\mu\nu} G^{\mu\nu} + \tilde{c}_g \frac{g_s^2}{32\pi^2 v^2} |H|^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$$
$$\tilde{G}_{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} G_{\lambda\rho}$$
After EWSB: 
$$\mathcal{L} = -c_t \frac{m_t}{v} \bar{t} th + \frac{g_s^2}{48\pi^2} c_g \frac{h}{v} G_{\mu\nu} G^{\mu\nu} \qquad c_t = 1 - \text{Re}(c_y)$$

While the signal is affected by the modified couplings, the background is not.



The differential cross-section is given by:


$$\frac{d\sigma}{dm_{4\ell}} = F_0(m_{4\ell}) + F_1(m_{4\ell})c_R^2 + F_2(m_{4\ell})c_I^2 + F_3(m_{4\ell})c_R + F_4(m_{4\ell})c_I$$

$$c_R = \frac{\operatorname{Re} \mathcal{M}_{\Delta}^{\operatorname{NP+SM}}}{\operatorname{Re} \mathcal{M}_{\Delta}^{\operatorname{SM}}}, \quad c_I = \frac{\operatorname{Im} \mathcal{M}_{\Delta}^{\operatorname{NP+SM}}}{\operatorname{Im} \mathcal{M}_{\Delta}^{\operatorname{SM}}}$$

1

Ayan Paul -- DESY Theory: Fellow's Meeting 2017

#### linearized vs. non-linearized analysis



Prospects for a 14 TeV analysis with an integrated luminosity of  $3 \text{ ab}^{-1}$  and for the injected SM signal: 68%, 95% and 99% expected probability regions in the  $(c_t, c_g)$  plane.

Open to improvement in both theoretical and experimental technologies. The difference between the linear and non-linear analysis at 14 TeV is large.

This difference falls off at higher energy colliders.

|                             | $33{ m TeV}$ | $50{ m TeV}$ | $80{ m TeV}$ | $100\mathrm{TeV}$ |
|-----------------------------|--------------|--------------|--------------|-------------------|
| non-linear $< 2 \text{TeV}$ | [0.92, 1.14] | [0.95, 1.11] | [0.96, 1.08] | [0.97, 1.07]      |
| $linear < 2  {\rm TeV}$     | [0.83, 1.18] | [0.9, 1.11]  | [0.94, 1.07] | [0.95, 1.05]      |
| non-linear all              | [0.94, 1.11] | [0.96, 1.08] | [0.98, 1.05] | [0.98, 1.04]      |
| linear all                  | [0.84, 1.16] | [0.91, 1.09] | [0.95, 1.05] | [0.96, 1.04]      |

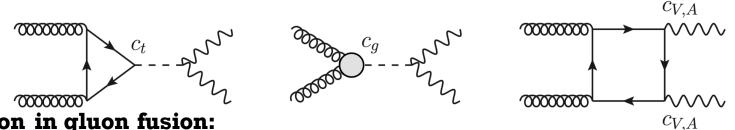
The 68% probability intervals on the value of  $c_t$ , obtained assuming  $c_t + c_g = 1$  and injecting the SM signal at various collider energies. In all cases an integrated luminosity of  $3 \text{ ab}^{-1}$  was assumed. The numbers in the second and the third row present the non-linear and linear analysis, respectively, for the low-energy bins only,  $\sqrt{s} < 2 \text{ TeV}$ . The fourth and the fifth rows contain the corresponding numbers obtained including all the bins up to 5 TeV.



RECEIVED: August 19, 2016 ACCEPTED: September 13, 2016 PUBLISHED: September 20, 2016

# Resolving gluon fusion loops at current and future hadron colliders

#### Aleksandr Azatov,<sup>*a*</sup> Christophe Grojean,<sup>*b*,1</sup> Ayan Paul<sup>*c*</sup> and Ennio Salvioni<sup>*d*</sup>

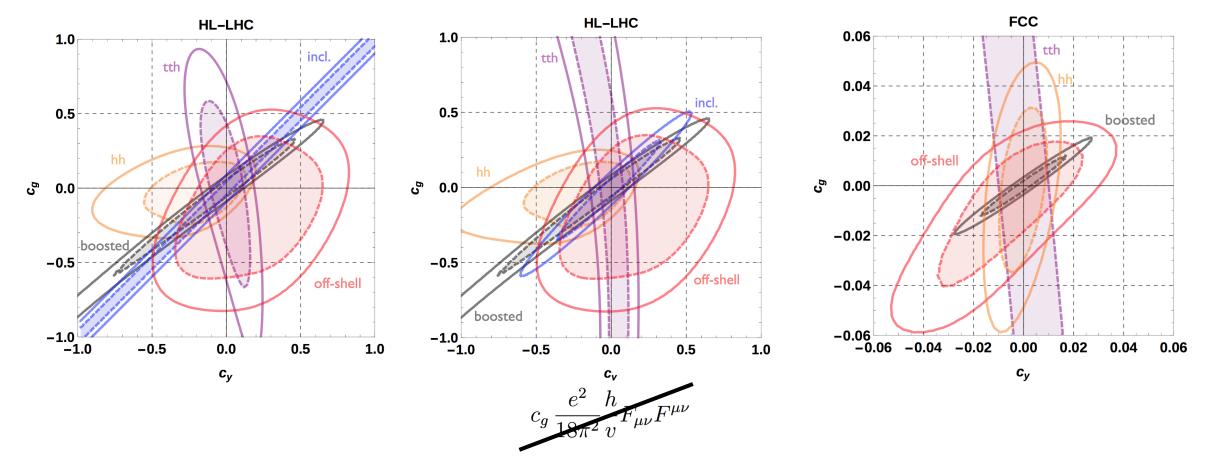

<sup>a</sup> Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy
<sup>b</sup> Theory Group, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
<sup>c</sup> INFN — Sezione di Roma, P.le A. Moro 2, I-00185 Rome, Italy
<sup>d</sup> Physics Department, University of California, Davis, One Shields Avenue, CA 95616, U.S.A.
E-mail: aazatov@ictp.it, Christophe.Grojean@desy.de, Ayan.Paul@roma1.infn.it, esalvioni@ucdavis.edu

#### **The Processes**

$$\mathcal{L}_{6} = c_{y} \frac{y_{t} |H|^{2}}{v^{2}} \bar{Q}_{L} \tilde{H} t_{R} + \text{h.c.} + \frac{c_{g} g_{s}^{2}}{48\pi^{2} v^{2}} |H|^{2} G_{\mu\nu} G^{\mu\nu} \qquad \qquad \mathcal{L}_{nl} = -c_{t} \frac{m_{t}}{v} \bar{t} th + \frac{c_{g} g_{s}^{2}}{48\pi^{2}} \frac{h}{v} G_{\mu\nu} G^{\mu\nu}, \qquad c_{t} = 1 - c_{y}$$

$$c_{g} \frac{e^{2}}{18\pi^{2}} \frac{h}{v} F_{\mu\nu} F^{\mu\nu}$$

- Higgs and top quark associated production: almost a direct measurement of c<sub>t</sub> with very little pollution from c<sub>g</sub>
- boosted Higgs production: sensitive to  $c_t$  and  $c_q$
- off-shell Higgs production: sensitive to  $c_t$  and  $c_q$  but also to effective ttZ couplings




- double Higgs production in gluon fusion:
  - occurs at energies much above the top quark mass top loops and contact interaction can be resolved
  - higher-point interactions make it really sensitive to the top-Yukawa sector

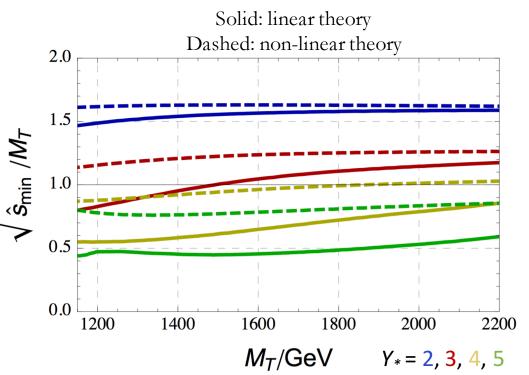
$$\mathcal{L}_{nl}^{hh} = -\frac{m_t}{v} \bar{t}t \left( c_t h + c_{2t} \frac{h^2}{v} \right) + \frac{c_g g_s^2}{48\pi^2} \left( \frac{h}{v} + \frac{h^2}{2v^2} \right) G_{\mu\nu} G^{\mu\nu} , \qquad c_{2t} = -\frac{3}{2} c_g$$

#### **The Combination**

SM signal injected the Higgs is a part of a doublet



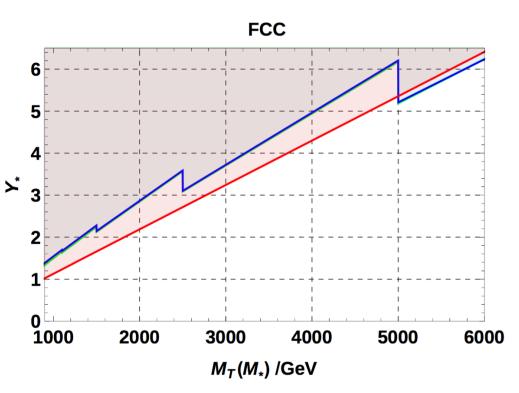
inclusive production projection from: ATLAS Collaboration, ATL-PHYS-PUB-2013-014, October 2013.


#### an EFT is valid if...

- Small energy requirement:  $\frac{E}{M_*} \ll 1 \label{eq:main}$
- Small coupling requirement:

 $\frac{Y_*v}{M_*} \ll 1$ 

• supression of dimension-8 operator:


$$O_g^{(8)} \sim \frac{g_s^2}{16\pi^2} \frac{Y_*^2}{M_*^4} |D_\lambda H|^2 G_{\mu\nu} G^{\mu\nu}$$



$$\frac{\left|\left(\frac{d\hat{\sigma}}{d\hat{s}}\right)_{\text{full}} - \left(\frac{d\hat{\sigma}}{d\hat{s}}\right)_{\text{EFT}}\right|}{\left(\frac{d\hat{\sigma}}{d\hat{s}}\right)_{\text{full}}} < 0.05$$

EFT simulation with MCFM full theory computation with FeynArts/FormCalc/LoopTools

#### full theory vs. EFT



✓ SM signal injected
 ✓ the linear and the non-linear theory overlap

 $\checkmark$  bins are added with increasing mass and hence the jagged shape of the EFT/non-linear model

Flavour Physics meets Higgs Physics



2014 Shiraz Cabernet - Wine of Australia - 750mL

Ayan Paul -- DESY Theory: Fellow's Meeting 2017

### why...??

- ✓ The flavour paradigm of models with an extra Higgs doublet is often limited to escape flavour bounds. But there there are the recent results for  $h \rightarrow \tau \mu$  and  $t \rightarrow ch$ .
- ✓ Stringent bounds on the masses of the expanded Higgs sector can be avoided by proposing certain flavour textures for the Yukawa interactions.
- ✓ We show that we can go beyond the flavour diagonal regime for the couplings of the SM fermions to the neutral Higgs states, yet respect bounds from flavour physics.
- ✓ Once we allow for one or more of the expanded Higgs family to have lower masses, interesting and yet unexplored collider signatures can arise.
- ✓ We show this with a axion variant model with the right handed top quark charged -1, two Higgs doublets charged 0 and -1 under a Peccei-Quinn symmetry.
- ✓ We also introduce a top-charm mixing between right handed up-quark sector. We implement a similar structure in the lepton sector too.

#### fits to the Higgs couplings

$$\kappa_{gZ} = \frac{\kappa_g \kappa_Z}{\kappa_h}$$
 and  $\lambda_{ij} = \frac{\kappa_i}{\kappa_j}$ ,  $(i,j) = (Z,g), (t,g), (W,Z), (\gamma,Z), (\tau,Z), (b,Z)$ 

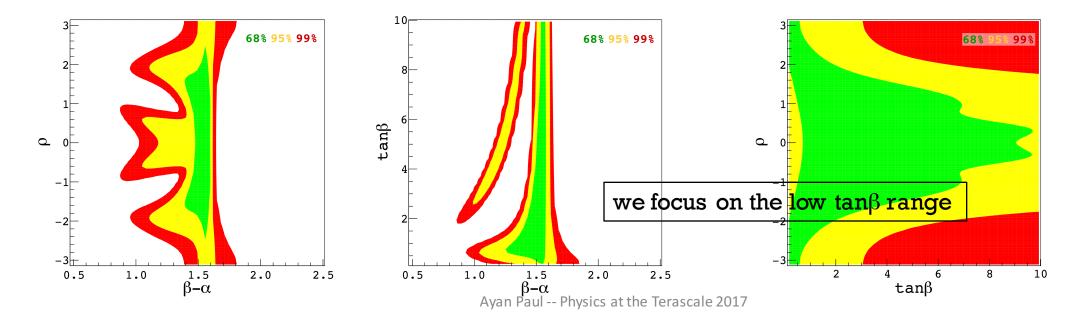
Higgs width modifier:

$$\begin{split} \kappa_h^2 &\simeq 0.57 \kappa_b^2 + 0.22 \kappa_W^2 + 0.09 \kappa_g^2 + 0.06 \kappa_t^2 + 0.03 \kappa_Z^2 + 0.03 \kappa_c^2 \\ &+ 2.3 \times 10^{-3} \kappa_\gamma^2 + 1.6 \times 10^{-3} \kappa_{Z\gamma}^2 + 10^{-4} \kappa_s^2 + 2.2 \times 10^{-4} \kappa_\mu^2 \end{split}$$

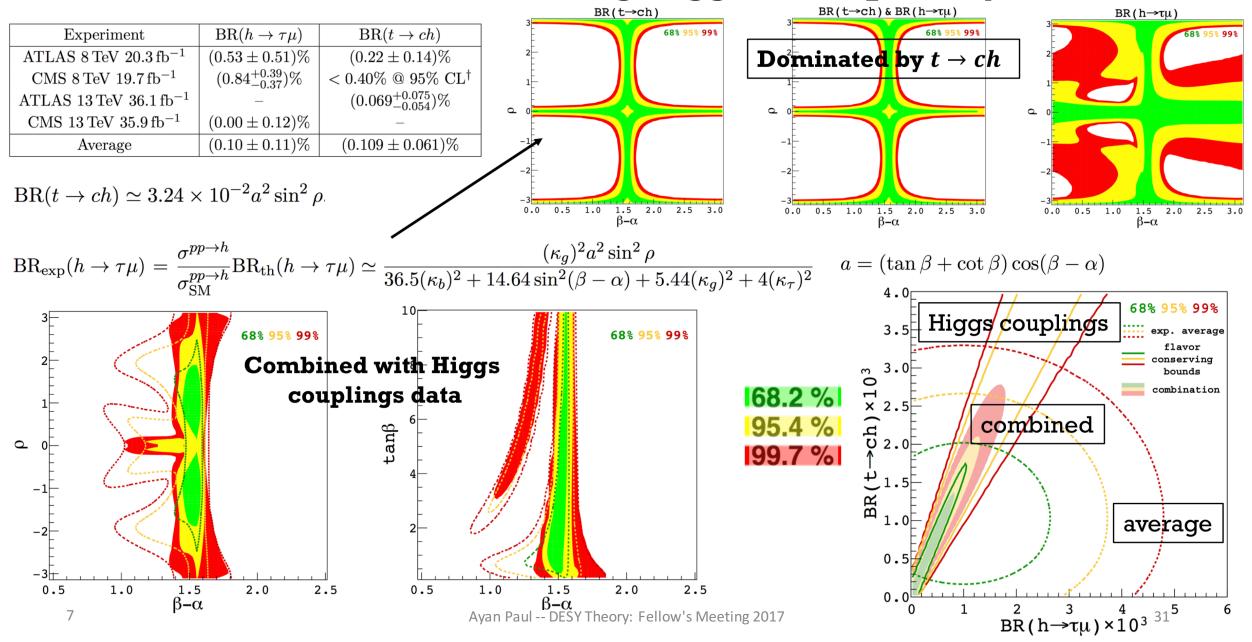
|                        | Mean  | RMS   |                        | $\kappa_{gZ}$ | $\lambda_{Zg}$ | $\lambda_{tg}$ | $\lambda_{WZ}$ | $ \lambda_{\gamma Z} $ | $ \lambda_{	au Z} $ | $ \lambda_{bZ} $ |
|------------------------|-------|-------|------------------------|---------------|----------------|----------------|----------------|------------------------|---------------------|------------------|
| $\kappa_{gZ}$          | 1.090 | 0.110 | $\kappa_{gZ}$          | 1.00          | -0.03          | -0.24          | -0.62          | -0.57                  | -0.38               | -0.34            |
| $\lambda_{Zg}$         | 1.285 | 0.215 | $\lambda_{Zg}$         | -0.03         | 1.00           | 0.51           | -0.59          | -0.51                  | -0.62               | -0.54            |
| $\lambda_{tg}$         | 1.795 | 0.285 | $\lambda_{tg}$         | -0.24         | 0.51           | 1.00           | -0.21          | -0.23                  | -0.28               | -0.35            |
| $\lambda_{WZ}$         | 0.885 | 0.095 | $\lambda_{WZ}$         | -0.62         | -0.59          | -0.21          | 1.00           | 0.66                   | 0.55                | 0.55             |
| $ \lambda_{\gamma Z} $ | 0.895 | 0.105 | $ \lambda_{\gamma Z} $ | -0.57         | -0.51          | -0.23          | 0.66           | 1.00                   | 0.58                | 0.51             |
| $ \lambda_{	au Z} $    | 0.855 | 0.125 | $ \lambda_{	au Z} $    | -0.38         | -0.62          | -0.28          | 0.55           | 0.58                   | 1.00                | 0.49             |
| $ \lambda_{bZ} $       | 0.565 | 0.175 | $ \lambda_{bZ} $       | -0.34         | -0.54          | -0.35          | 0.55           | 0.51                   | 0.49                | 1.00             |

Higgs-gauge field coupling modifier:  $\kappa_W = \kappa_Z = \sin(\beta - \alpha),$   $\kappa_{Z\gamma}^2 = 0.00348\kappa_t^2 + 1.121\kappa_W^2 - 0.1249\kappa_t\kappa_W,$   $\kappa_g^2 = 1.06\kappa_t^2 + 0.01\kappa_b^2 - 0.07\kappa_b\kappa_t,$   $\kappa_{\gamma}^2 = 1.59\kappa_W^2 + 0.07\kappa_t^2 - 0.66\kappa_W\kappa_t,$ 

Run 1 ATLAS-CMS combination arXiV:1606.02266 Higgs-fermion coupling modifier:


$$\kappa_f = \frac{\sqrt{2}v}{m_f} c_f^h$$

68.2 %


95.4 %

99.7 %

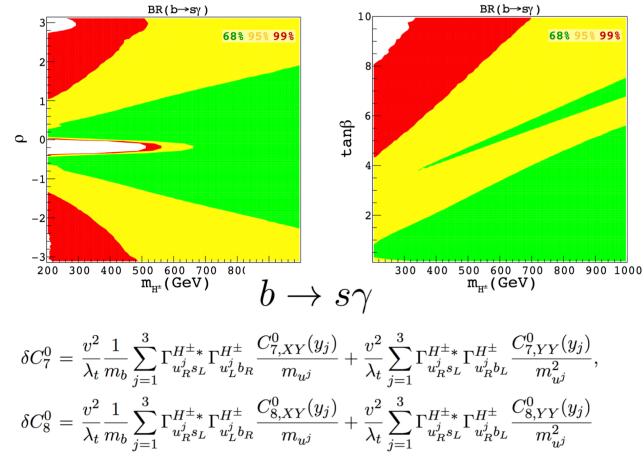
30



#### fits to flavour violating Higgs and top decays



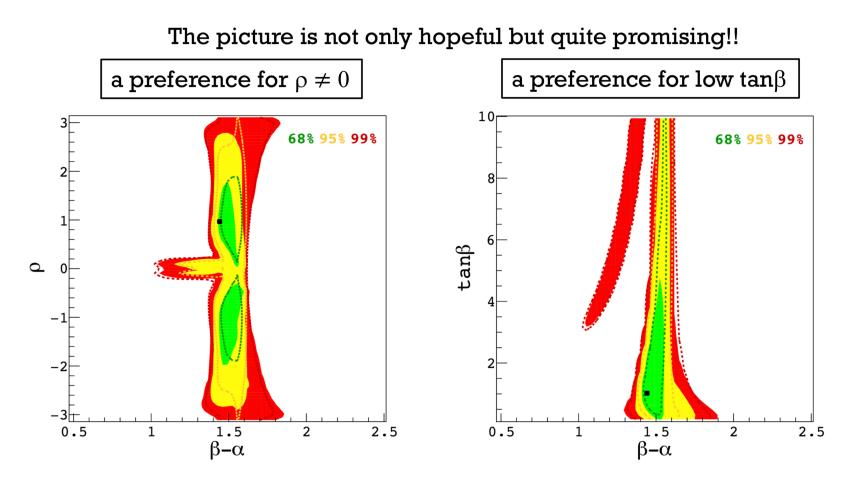
#### fits to low energy FCNC and charged current decays


| Process                    | Measurement                      | SM Prediction                     |
|----------------------------|----------------------------------|-----------------------------------|
| ${ m BR}(b 	o s \gamma)$   | $(3.32\pm0.15)	imes10^{-4}$      | $(3.36 \pm 0.23) 	imes 10^{-4}$   |
| $\mathrm{BR}(B\to\tau\nu)$ | $(1.06 \pm 0.19) \times 10^{-4}$ | $(0.807 \pm 0.061) 	imes 10^{-4}$ |
| $R_D$                      | $0.403 \pm 0.47$                 | $0.299 \pm 0.003$                 |
| $R_{D*}$                   | $0.310\pm0.17$                   | $0.257 \pm 0.003$                 |

$$BR(B \to \tau\nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \tau_B \left|1 + \frac{m_B^2}{m_b m_\tau} \frac{C_R^{ub} - C_L^{ub}}{C_{SM}^{ub}}\right|^2$$
$$C_R^{ub} = -\frac{1}{m_{H^\pm}^2} \Gamma_{b_R u_L}^{H^\pm} \Gamma_{\nu_L \tau_R}^{H^\pm} \text{ and } C_L^{ub} = -\frac{1}{m_{H^\pm}^2} \Gamma_{b_L u_R}^{H^\pm} \Gamma_{\nu_L \tau_R}^{H^\pm}$$

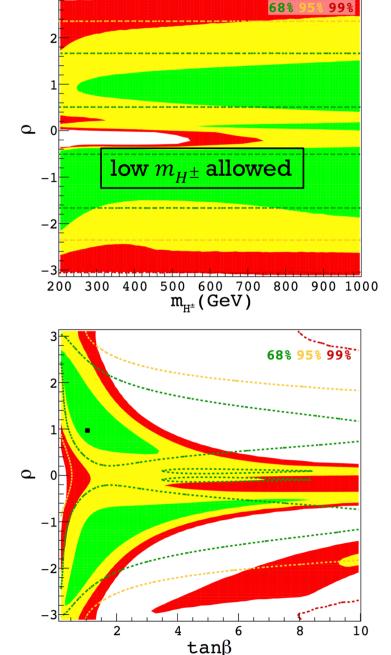
Large contributions to  $B \rightarrow \tau \nu$  are not generated by this model

$$R_{D} = R_{D}^{\text{SM}} \left( 1 + 1.5 \Re \left( \frac{C_{R}^{cb} + C_{L}^{cb}}{C_{\text{SM}}^{cb}} \right) + 1.0 \left| \frac{C_{R}^{cb} + C_{L}^{cb}}{C_{\text{SM}}^{cb}} \right|^{2} \right),$$
$$R_{D^{*}} = R_{D^{*}}^{\text{SM}} \left( 1 + 0.12 \Re \left( \frac{C_{R}^{cb} - C_{L}^{cb}}{C_{\text{SM}}^{cb}} \right) + 0.05 \left| \frac{C_{R}^{cb} - C_{L}^{cb}}{C_{\text{SM}}^{cb}} \right|^{2} \right)$$

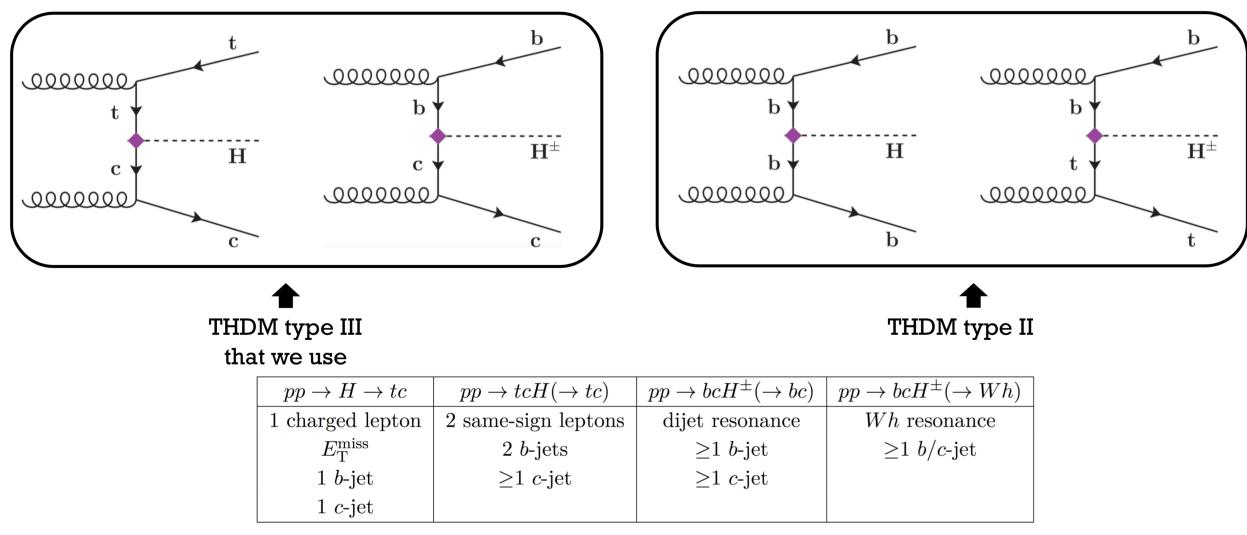

 $R_D$  and  $R_{D^*}$  are not explained by this model but the fit to the parameter space is affected by these measurements



strong bound on charged Higgs mass (typical of THDM type II) is alleviated because of cancellations with the SM contributions at low  $tan\beta$ 


 $m_{H^\pm} \gtrsim 580~{
m GeV}$  @ 95% CL in THDM type II

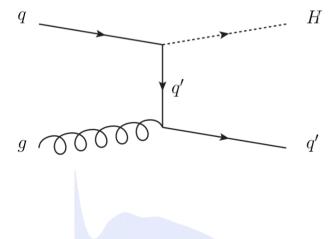
## combining all constraints




The black dots mark the benchmark point with discuss in our study of collider phenomenology

Ayan Paul -- DESY Theory: Fellow's Meeting 2017



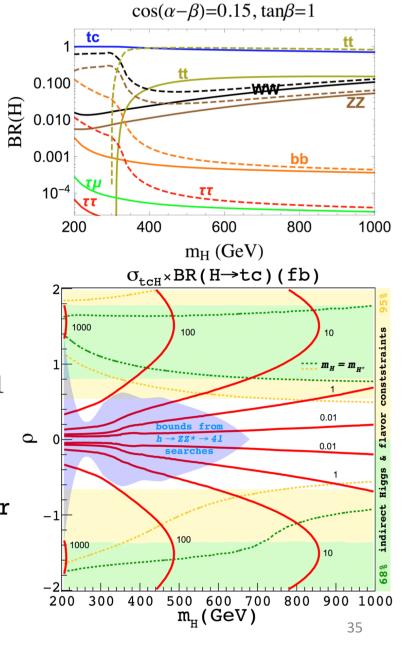

#### collider phenomenology of the heavy Higgs



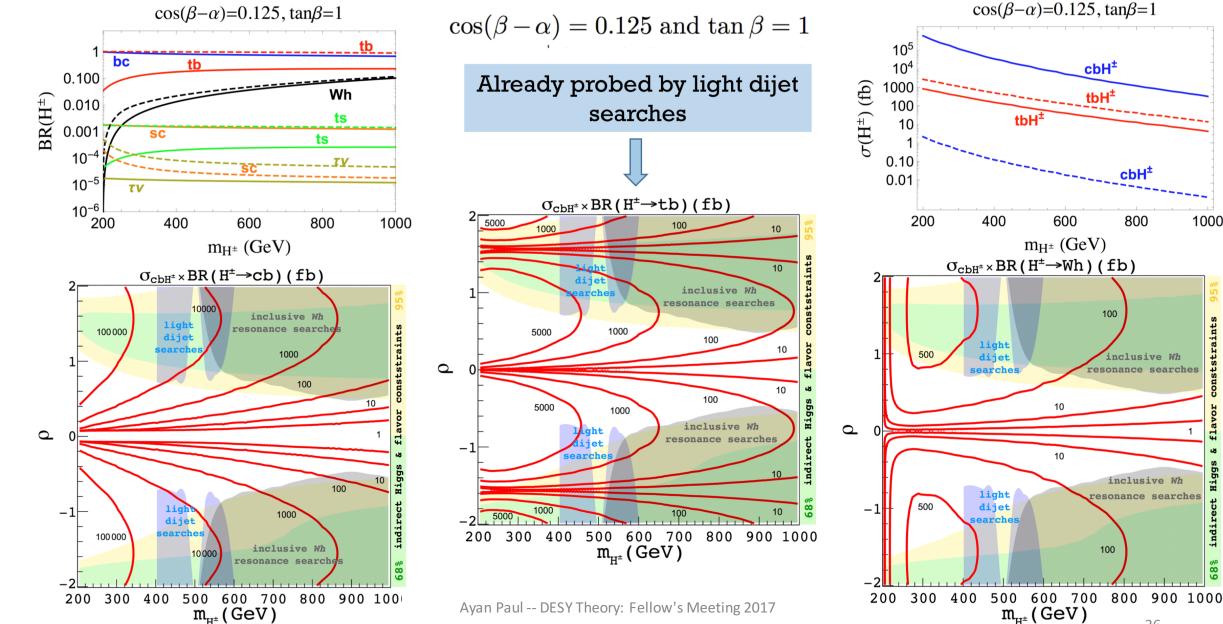
#### a list of interesting signatures

#### collider phenomenology of the heavy neutral Higgs






excluded by 13 TeV  $gg \rightarrow H \rightarrow ZZ^* \rightarrow 4l$ 


$$\cos(\beta - \alpha) = 0.125$$
 and  $\tan \beta =$ 

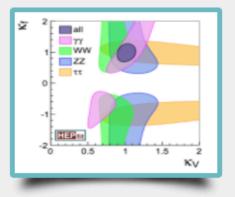
 $m_{H^{\pm}} = m_{H^{0}}$   $m_{H^{\pm}}$   $m_{H^{\pm}}$   $m_{H^{\pm}}$   $m_{H^{\pm}}$   $m_{H^{\pm}}$ 

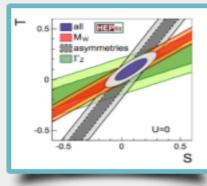
Ayan Paul -- DESY Theory: Fellow's Meeting 2017

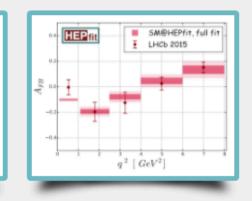


#### collider phenomenology of the charged Higgs

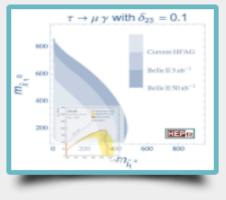



## **On HEPfit:**


## When the going gets tough, the tough get going.


#### J. P. Kennedy or Knute Rockne




# HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models.







samples



Higgs Physics HEPfit can be used to study Higgs couplings and analyze data on signal strengths. Precision Electroweak Electroweak precision observables are included in HEPfit

#### Flavour Physics

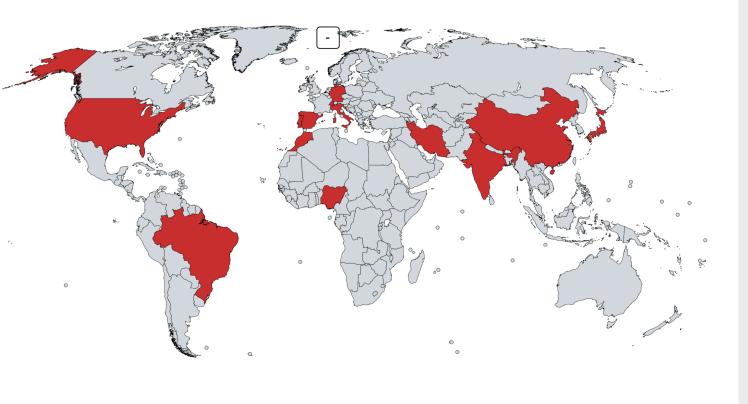
The Flavour Physics menu in HEPfit includes both quark and lepton flavour dynamics. BSM Physics Dynamics beyond the Standard Model can be studied by adding models in HEPfit.

Ayan Paul -- DESY Theory: Fellow's Meeting 2017

Exisiting fitters: CKMfitter (F), GAMBIT (B), GAPP (B), Gfitter (F), HiggsSignals (F), Mastercode (F), UTfit (B), ...

No fitters: CheckMate (yes/no), HiggsBounds (yes/no), Zfitter (no fitting algorithm)

## Problems:


too slow, depend on external codes, mostly only one model defined

















Marco Ciuchini



Jorge de Blas

Debtosh Chowdhury

Antonio Coutinho



the second

Otto Eberhardt

Marco Fedele

Enrico Franco

Giovanni Grilli di Cortona







Maurizio Pierini

Laura Reina



Ayan Paul

#### The release candidate 1.0 contains more than 600 observables:

| HEPfit name         | Model(s) | Comments                                                                           | HEPfit name                 | Model(s) | Comments                                       | Source | HEPfit name                                              | Model(s)     | Comments                                                                                   | Source                                                      | HEPfit name      | Model(s)     | Comments                                  | Source   |
|---------------------|----------|------------------------------------------------------------------------------------|-----------------------------|----------|------------------------------------------------|--------|----------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|--------------|-------------------------------------------|----------|
| MtMSbar             | SM       | Comments                                                                           | BR_bsgamma                  | SM       | Connents                                       | Cource | mu_e_gamma                                               | SUSY         |                                                                                            |                                                             | Robs_ $B\sigma$  | THDM         | $B\sigma \in ggF$ H tautau ATLAS,         | [?]      |
| Mw                  | SM       |                                                                                    | ACP_bsgamma                 | SM       |                                                |        | log_meg                                                  | SUSY         |                                                                                            |                                                             | RODS_BO          | THOM         | ggF_H_tautau_ATEAS,                       | 1.1      |
| GammaW              | SM       |                                                                                    | BR_bdgamma                  | SM       |                                                |        | tau_mu_gamma                                             | SUSY         |                                                                                            |                                                             |                  |              | bbF H tautau ATLAS,                       |          |
| GammaW<br>GammaZ    | SM       |                                                                                    | ACP_bdgamma                 | SM       |                                                |        | log_tmg                                                  | SUSY         |                                                                                            |                                                             |                  |              | bbF_H_tautau_ATEAS,<br>bbF_H_tautau_CMS,  |          |
|                     | SM       |                                                                                    | BR_bqgamma                  | SM       |                                                |        | tau_e_gamma<br>log_teg                                   | SUSY         |                                                                                            |                                                             |                  |              | pp H gaga ATLAS,                          |          |
| sigmaHadron         | SM       |                                                                                    | ACP_bqgamma                 | SM       |                                                |        | mu_3e                                                    | SUSY         |                                                                                            |                                                             |                  |              | ggF H gaga CMS,                           |          |
| sin2thetaEff        | SM       |                                                                                    | P_i_BdKstmu                 | SM       | $i \in \{1, 2, 3, 4p, 5p, 6p, 8p\}$            |        | tau_3mu                                                  | SUSY         |                                                                                            |                                                             |                  |              | mu_pp_H_VV_CMS,                           |          |
| PtauPol             | SM       |                                                                                    | P_ <i>i</i> _BdKste         | SM       | $i \in 1, 2, 3$                                |        | tau_3e                                                   | SUSY         |                                                                                            |                                                             |                  |              | ggF H ZZ ATLAS.                           |          |
| Alepton             | SM       |                                                                                    | Gammap_BdKstmu              | SM       |                                                |        | gminus2_mu<br>Robs_mu_e_gamma                            | SUSY<br>SUSY |                                                                                            |                                                             |                  |              | VBF H ZZ ATLAS.                           |          |
| Acharm              |          |                                                                                    | A_FB_BdKstmu                | SM       |                                                |        | Robs_tau_mu_gamma                                        | SUSY         |                                                                                            |                                                             |                  |              | ggF H WW ATLAS,                           |          |
| Abottom             | SM       |                                                                                    | BR_BdKstmu                  | SM       |                                                |        | Robs_tau_mu_gamma_BelleI                                 |              |                                                                                            |                                                             |                  |              | VBF H WW ATLAS,                           |          |
| AFBlepton           | SM       |                                                                                    | BR_BdKste                   | SM       |                                                |        | Robs_tau_e_gamma                                         | SUSY         |                                                                                            |                                                             |                  |              | ggF_H_hh_ATLAS,                           |          |
| AFBcharm            | SM       |                                                                                    | RKst_BdKstll                | SM       |                                                |        | deltaLLi_f                                               | SUSY         | i = 1, 2, 3, f = q, l                                                                      |                                                             |                  |              | pp_H_hh_CMS,                              |          |
| AFBbottom           | 0.01     |                                                                                    | RKstL_BdKstll               | SM       |                                                |        | deltaRL_jj_u                                             | SUSY         | ij = 12, 13, 23<br>ij = 12, 13, 23, 21, 31, 32                                             |                                                             |                  |              | ggF H hh bbtautau CN                      | vis.     |
| Rlepton             | SM       |                                                                                    | RKstT_BdKstll               | SM       |                                                |        | deltaRL_ <i>ij</i> _e<br>deltaRR <i>i_f</i>              | SUSY         | i = 12, 13, 23, 21, 31, 32<br>i = 1, 2, 3, f = u, d, e                                     |                                                             |                  |              | pp H hh bbbb CMS,                         | 10,      |
| Rcharm              | SM       |                                                                                    | R6_BdKstll                  | SM       |                                                |        | CCBfij                                                   | SUSY         | f = u, d, e, ij = 11, 22, 33, 12, 13, 23                                                   |                                                             |                  |              | pp_H_hh_gagabb_CMS,                       |          |
| Rbottom             | SM       |                                                                                    | ACP_BdKstmu                 | SM       |                                                |        | MH1                                                      | SUSY         |                                                                                            |                                                             |                  |              | ggF H tt ATLAS.                           |          |
| $ggH \times$        | SM       | $x \in 7, 8, 13, 14, 100, 196$ ; without x default is 8                            | P3CP_BdKstmu                | SM<br>SM |                                                |        | MHh                                                      | SUSY         |                                                                                            |                                                             |                  |              | bbF H bb CMS                              |          |
| VBF×                | SM       | $x \in 7, 8, 13, 14, 100, 196$ ; without x default is 8                            | F_L_BdKstmu                 | SM       |                                                |        | MHa.<br>MHp                                              | SUSY<br>SUSY |                                                                                            |                                                             | $log10_B\sigma$  | THDM         | $B\sigma \in ggF_H_tautau_TH$ ,           |          |
| WH×                 | SM       | $x \in 7, 8, 13, 14, 100$ ; without x default is 8                                 | F_L_BdKste<br>M_i_BdKstmu   | SM       | $i \in 1p, 2p$                                 |        | мнр<br>Ma <i>fi</i>                                      | SUSY         | f = u, d, l, i = 1, 2, 3, 4, 5, 6                                                          |                                                             |                  |              | bbF_H_tautau_TH,                          |          |
| ZH×                 | SM       | $x \in 7, 8, 13, 14, 100$ ; without x default is 8                                 | S_i_BdKstmu                 | SM       | $i \in [1p, 2p]$<br>$i \in [3, 4, 5, 7, 8, 9]$ |        | Msnui                                                    | SUSY         | i = 1, 2, 3                                                                                |                                                             |                  |              | pp_H_gaga_TH,                             |          |
| VH×                 | SM       | $x \in 7, 8, 13, 14, 100, 196$ ; without x default is 8                            | A_i_BdKstmu                 | SM       | $i \in [3, 4, 5, 7, 6, 9]$<br>$i \in [6, 9]$   |        | Mchi                                                     | SUSY         | i = 1, 2                                                                                   |                                                             |                  |              | ggF_H_gaga_TH,                            |          |
| ggH+ttH×            | SM       | $x \in 8, 13, 14, 100$ ; without x default is 8                                    | P_if_BdKstmu                | SM       | $i \in [1, 2, 3, 4p, 5p, 6p, 8p]$              |        | Msneui                                                   | SUSY         | i = 1, 2, 3, 4                                                                             |                                                             |                  |              | mu_pp_H_VV_TH,                            |          |
| VBF+VH×             | SM       | $x \in 8, 13, 14, 100$ ; without x default is 8                                    | Gammapf_BdKstmu             | SM       | 1, 2, 3, 4p, 5p, 6p, 6p                        |        | Mw_dRho<br>mHl THDM                                      | SUSY<br>THDM |                                                                                            |                                                             |                  |              | ggF_H_ZZ_TH,                              |          |
| ttH×                | SM       | $x \in 7, 8, 13, 14, 100, 196$ ; without x default is 8                            | BRf_BdKstmu                 | SM       |                                                |        | mH1_THDM<br>mHh                                          | THDM         |                                                                                            |                                                             |                  |              | VBF_H_ZZ_TH,                              |          |
| eeZH×               | SM       | $x \in 240, 250, 500, 1000$                                                        | A_FBf_BdKstmu               | SM       |                                                |        | mA                                                       | THDM         |                                                                                            |                                                             |                  |              | ggF_H_WW_TH,                              |          |
| eeWBF×              | SM       | $x \in 250, 350, 500, 1000$                                                        | F_Lf_BdKstmu                | SM       |                                                |        | mHp                                                      | THDM         |                                                                                            |                                                             |                  |              | VBF_H_WW_TH,                              |          |
| eettHx              | SM       | $x \in 500, 1000$                                                                  | S_if_BdKstmu                | SM       | $i \in (3, 4, 5, 7, 8, 9)$                     |        | mHlmmA                                                   | THDM         |                                                                                            |                                                             |                  |              | ggF_H_hh_TH,                              |          |
| BrHggRatio          | SM       |                                                                                    | P_relationf                 | SM       |                                                |        | mAmmH1<br>mH1mmHr                                        | THDM<br>THDM |                                                                                            |                                                             |                  |              | pp_H_hh_TH,                               |          |
| BrHWWRatio          | SM       |                                                                                    | P_relation_exactf           |          |                                                |        | mHpmmHl                                                  | THDM         |                                                                                            |                                                             |                  |              | ggF_H_hh_bbtautau_TH                      | d,       |
| BrHZZRatio          | SM       |                                                                                    | Vx_BdKstmu                  | SM       | $x \in 0, p, m$                                |        | mHhmmA                                                   | THDM         |                                                                                            |                                                             |                  |              | pp_H_hh_bbbb_TH,                          |          |
| BrHZgaRatio         | SM       |                                                                                    | Tx_BdKstmu                  | SM       | $x \in 0, p, m$                                |        | mAmmHh                                                   | THDM         |                                                                                            |                                                             |                  |              | pp_H_hh_gagabb_TH,                        |          |
| BrHgagaRatio        | SM       |                                                                                    | S_BdKstmu                   | SM       |                                                |        | mHhmmHp                                                  | THDM<br>THDM |                                                                                            |                                                             |                  |              | ggF_H_tt_TH,                              |          |
| BrHmumuRatio        | SM       |                                                                                    | QCDfC9_if_BdKstmu           |          | $i \in 1, 2, 3$                                |        | mH pmmHh<br>mAmmHp                                       | THDM         |                                                                                            |                                                             |                  |              | bbF_H_bb_TH                               |          |
| BrHtautauRatio      | SM       |                                                                                    | QCDfC9p_if_BdKstmu          | SM       | $i \in 1, 2, 3$                                |        | mAmmip<br>mHpmmA                                         | THDM         |                                                                                            |                                                             | Gamma_HH_THDM    | THDM         |                                           |          |
| BrHccRatio          | SM       |                                                                                    | Regtilde_i_BdKstmu          | SM       | $i \in 1, 2, 3$                                |        | mii_2                                                    | THDM         | ii = 11, 22                                                                                |                                                             | rHH_gg_THDM      | THDM         |                                           |          |
| BrHbbRatio          | SM       |                                                                                    | Imgtilde_i_BdKstmu          |          | $i \in 1, 2, 3$                                |        | lambdai                                                  | THDM         | i = 1, 2, 3, 4, 5                                                                          |                                                             | BR_HH_hh_THDM    | THDM         |                                           |          |
| epsilonx            | SM       | x = 1, 2, 3, b                                                                     | Absgtilde_i_BdKstmu         |          | $i \in 1, 2, 3$                                |        | lambda345                                                | THDM         |                                                                                            |                                                             | BR_HH_AA_THDM    | THDM         |                                           |          |
| DmBd                | SM       |                                                                                    | Arggtilde_i_BdKstmu         |          | $i \in 1, 2, 3$                                |        | g_hhh<br>g_hhHh                                          | THDM         |                                                                                            |                                                             | BR_HH_HpHm_THDM  | THDM<br>THDM |                                           |          |
| DmBs                | SM, THDM |                                                                                    | Reh_x_BdKstmu               | SM       | $x \in 0, p, m$                                |        | g_nnnn<br>g_hHhHh                                        | THDM         |                                                                                            |                                                             | BR_HH_AZ_THDM    |              |                                           |          |
| SJPsiK              | SM       |                                                                                    | Imh_x_BdKstmu               | SM       | $x \in 0, p, m$                                |        | g_HhHhHh                                                 | THDM         |                                                                                            |                                                             | BR_HH_HpW_THDM   | THDM         |                                           | (2)      |
| Betas_JPsiPhi       | SM       |                                                                                    | Absh_x_BdKstmu              | SM       | $x \in 0, p, m$<br>$x \in 0, p, m$             |        | g_hAA                                                    | THDM         |                                                                                            |                                                             | Robs_ $B\sigma$  | THDM         | $B\sigma \in ggF_A_tautau_ATLAS$ ,        | [?]      |
| EpsilonK            | SM       |                                                                                    | Argh_x_BdKstmu              | SM       | $x \in 0, p, m$                                |        | g_HhAA                                                   | THDM         |                                                                                            |                                                             |                  |              | ggF_A_tautau_CMS,<br>bbF_A_tautau_ATLAS,  |          |
| DmK                 | SM       |                                                                                    | A_FB_BpKstmu<br>F_L_BpKstmu | SM       |                                                |        | g_hHpHm<br>g_HhHpHm                                      | THDM         |                                                                                            |                                                             |                  |              | bbF_A_tautau_ATLAS,<br>bbF_A_tautau_CMS,  |          |
| Vij                 | SM       | i = u, c, t; j = d, s, b                                                           | F_L_BpKstmu<br>BR_BpKstmu   | SM       |                                                |        | g_HnHpHm<br>Yi_THDM                                      | THDM         | i = 1, 2, 3                                                                                |                                                             |                  |              |                                           |          |
| alpha               | SM       |                                                                                    | BR_BKstgamma                | SM       |                                                |        | Zi_THDM                                                  | THDM         | i = 1, 2, 3, 4, 5, 6, 7                                                                    |                                                             |                  |              | pp_A_gaga_ATLAS,                          |          |
| alpha_2a            | SM       |                                                                                    | C_BKstgamma                 | SM       |                                                |        | xin_THDM                                                 | THDM         | n = 0, 1, 3                                                                                |                                                             |                  |              | ggF_A_gaga_CMS,                           |          |
| gamma               | SM       |                                                                                    | S_BKstgamma                 | SM       |                                                |        | etax_THDM                                                | THDM         | x = 00, 3                                                                                  |                                                             |                  |              | pp_A_Zga_llga_CMS,<br>ggF_A_hZ_bbll_CMS,  |          |
| beta                | SM       |                                                                                    | ADG_BKstgamma               | SM       |                                                |        | E <i>ii</i> _THDM<br>HHlambda <i>i</i>                   | THDM         | ii = 11, 22, 33<br>i = 1, 2, 3, 4, 5, 6                                                    |                                                             |                  |              | ggF_A_hZ_bbl_CMS,<br>ggF_A_hZ_bbZ_ATLAS   |          |
| betas               | SM       |                                                                                    | DC7_i                       | SM       | $i \in 1, 2$                                   |        | HHlambda/<br>Q_st                                        | THDM         | i — 1, 2, 3, 4, 5, 0                                                                       |                                                             |                  |              | ggF_A_hZ_bbZ_ATLAS                        |          |
| 2betapgamma         | SM       |                                                                                    | AbsDC7_x                    | SM       | $x \in L, R$                                   |        | DeltaQ_THDM                                              | THDM         |                                                                                            |                                                             |                  |              | ggF_A_hZ_tautaull_CM                      |          |
| s2beta              | SM       |                                                                                    | ReDC7_x                     | SM       | $x \in L, R$                                   |        | giatQ                                                    | THDM         | i = 1, 2, 3                                                                                |                                                             |                  |              | ggF_A_hZ_tautauZ_ATT                      | -ns,     |
| c2beta              | SM       |                                                                                    | ImDC7_x                     | SM       | $x \in L, R$                                   |        | YtopatQ                                                  | THDM         |                                                                                            |                                                             |                  |              | bbF A bb CMS                              |          |
| CKM_rho             | SM       |                                                                                    | hp0_hm0                     | SM       |                                                |        | YbottomatQ                                               | THDM<br>THDM |                                                                                            |                                                             | $log10_B\sigma$  | THDM         | $B\sigma \in ggF$ A tautau TH,            |          |
| CKM_eta             | SM       |                                                                                    | BR_BpKstgamma               | SM       |                                                |        | YtauatQ<br>m/j_2atQ                                      | THDM         | ij = 11, 22, 12                                                                            |                                                             | 10810-200        |              | bbF A tautau TH,                          |          |
| sintheta12          | SM       |                                                                                    | P_i_Bsphimu                 | SM       | $i \in 1, 2, 3, 4p, 5p, 6p, 8p$                |        | lambda/atQ                                               | THDM         | y = 11, 22, 12<br>i = 1, 2, 3, 4, 5                                                        |                                                             |                  |              | pp_A_gaga_TH,                             |          |
| sintheta13          | SM       |                                                                                    | Gammap_Bsphimu              | SM       |                                                |        | positivityi                                              | THDM         | i = 1, 2, 3, 4, 5                                                                          | [?]                                                         |                  |              | ggF A gaga TH,                            |          |
| sintheta23          | SM       |                                                                                    | A_FB_Bsphimu                | SM       |                                                |        | globalminimum                                            | THDM         |                                                                                            | [?]                                                         |                  |              | pp_A_Zga_llga_TH,                         |          |
| ckmdelta            | SM       |                                                                                    | BR_Bsphimu                  | SM       |                                                |        | unitarityi                                               | THDM         | $i = \{1 \dots 12\}$                                                                       | [?, ?, ?, ?, ?]                                             |                  |              | ggF A hZ bbll TH,                         |          |
| J_CP                | SM       |                                                                                    | Rphi_Bsphill                | SM       |                                                |        | unitarityal godd                                         | THDM<br>THDM | $\sigma = 0, 1$<br>$\sigma = 0, 1$                                                         | [?, ?]                                                      |                  |              | ggF A hZ bbZ TH,                          |          |
| Rt                  | SM       |                                                                                    | RphiL_Bsphill               | SM       |                                                |        | unitarityal $\sigma$ oddRe<br>unitarityal $\sigma$ oddIm | THDM         | $\sigma = 0, 1$<br>$\sigma = 0, 1$                                                         | [7. 7]                                                      |                  |              | ggF_A_hZ_bb2_TH,<br>ggF_A_hZ_tautaull_TH, |          |
| Rts                 | SM       |                                                                                    | RphiT_Bsphill               | SM       |                                                |        | unitaritya $Y\sigma\mathbb{Z}_2s$                        | THDM         | $Y\sigma = 00, 01, 11, \mathbb{Z}_2 = odd, even, s = p, m$                                 | [?, ?]                                                      |                  |              | ggF_A_hZ_tautauI_TH                       |          |
| Rb                  | SM       |                                                                                    | R6_Bsphill                  | SM       |                                                |        | unitaritya $Y\sigma\mathbb{Z}_2s$ Re                     | THDM         | $Y\sigma = 00, 01, 11, \mathbb{Z}_2 = odd, even, s = p, m$                                 | [?, ?]                                                      |                  |              | ggF A tt TH,                              | 1        |
| VtdoVts             | SM       |                                                                                    | ACP_Bsphimu                 | SM       |                                                |        | unitaritya $Y\sigma\mathbb{Z}_2s$ Im                     | THDM         | $Y\sigma = 00, 01, 11, \mathbb{Z}_2 = odd, even, s = p, m$                                 | [?, ?]                                                      |                  |              | bbF A bb TH                               |          |
| Abslam_X            | SM       | $x \in u, c, t, ud, cd, td, us, cs, ts$                                            | P3CP_Bsphimu                | SM       |                                                |        | unitarityRpi                                             | THDM         | i = 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 19, 20<br>i = 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 19, 20 | [?, ?]                                                      | Gamma_A_THDM     | THDM         |                                           |          |
| Relam_x             | SM       | $x \in u, c, t, ud, cd, td, us, cs, ts$<br>$x \in u, c, t, ud, cd, td, us, cs, ts$ | F_L_Bsphimu                 | SM       |                                                |        | unitarityRi<br>ggF_tth_htobb                             | THDM         | 1 - 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 19, 20                                                | [7]                                                         | rA_gg_THDM       | THDM         |                                           |          |
| Imlam_x             | SM       | $x \in u, c, t, ud, cd, td, us, cs, ts$<br>$x \in u, c, t, ud, cd, td, us, cs, ts$ | M_i_Bsphimu                 | SM       | $i \in 1p, 2p$                                 |        | ggF_tth_htoWW                                            | THDM         |                                                                                            | [?]                                                         | BR_A_HZ_THDM     | THDM         |                                           |          |
| BR_Bdmumu           | SM       | $\lambda \in u, c, \iota, uu, cu, tu, us, cs, ts$                                  | S_i_Bsphimu                 | SM       | $i \in (3, 4, 5, 7, 8, 9)$                     |        | ggF_tth_htotautau                                        | THDM         |                                                                                            | [?]<br>[?]<br>[?]<br>[?]<br>[?]<br>[?]<br>[?]<br>[?]<br>[?] | BR_A_hZ_THDM     | THDM         |                                           |          |
|                     | SM       |                                                                                    | A_i_Bsphimu                 | SM       | $i \in 6, 9$                                   |        | ggF_tth_htoZZ                                            | THDM         |                                                                                            | [?]                                                         | BR_A_HpW_THDM    | THDM         |                                           |          |
| BRbar_Bdmumu        | SM       |                                                                                    | BR_Bsphigamma               | SM       |                                                |        | ggF_tth_htogaga                                          | THDM         |                                                                                            | [?]                                                         | DeltaS           | THDM         |                                           | [?]      |
| Amumu_Bd            | SM       |                                                                                    | C_Bsphigamma                | SM       |                                                |        | VBF_Vh_htobb<br>VBF_Vh_htoWW                             | THDM<br>THDM |                                                                                            | [?]                                                         | DeltaT           | THDM         |                                           | [?]      |
| Smumu_Bd            | SM       |                                                                                    | S_Bsphigamma                | SM<br>SM |                                                |        | VBF_Vh_htoww<br>VBF_Vh_htotautau                         | THDM         |                                                                                            | [?]                                                         | DeltaU           | THDM         |                                           | [?]      |
| BR_Bsmumu           |          |                                                                                    | ADG_Bsphigamma              |          |                                                |        | VBF_Vh_htoZZ                                             | THDM         |                                                                                            | [?]                                                         | B_BtoXsgammaTHDM |              | Interpolation of tabled values            |          |
| BRbar_Bsmumu        | SM       |                                                                                    | BR_BKmu                     | SM       |                                                |        | VBF_Vh_htogaga                                           | THDM         |                                                                                            | [?]                                                         |                  |              | , see a second                            | <u> </u> |
| Amumu_Bs            | SM       |                                                                                    | BR_BKe                      | SM       |                                                |        | Gamma_h_THDM                                             | THDM         |                                                                                            |                                                             |                  |              |                                           |          |
| Smumu_Bs            | SM<br>SM |                                                                                    | RK_BK11<br>btaunu           | SM.THDM  |                                                | [?]    | rh_gaga_THDM<br>rh_gg_THDM                               | THDM         |                                                                                            |                                                             |                  |              |                                           |          |
| BR_BdmumuOBR_Bsmumu |          |                                                                                    |                             |          |                                                |        |                                                          |              |                                                                                            |                                                             |                  |              |                                           |          |

## Thank you...!!



Ayan Paul -- DESY Theory: Fellow's Meeting 2017

To my Mother and Father, who showed me what I could do,

and to Ikaros, who showed me what I could not.

"To know what no one else does, what a pleasure it can be!"

– adopted from the words of

Eugene Wigner.

