Exact results in QFT

Alessandro Pini

12 December, 2017

Some information about myself

• I was born in Milan (Italy)

ack Sea

• I did my bachelor and my master in Milan (Italy)

BICK

Alessandro Pini

LANTIC

OCEAN

Exact results in QFT

wrehend

12 December, 2017 3 / 15

• I was born in Milan (Italy)

• I did my bachelor and my master in Milan (Italy)

I did my PhD in Oviedo

BISTA

(Spain)

Alessandro Pini

LANTIC

OCEAN

Exact results in QFT

12 December, 2017 3 / 15

• I was born in Milan (Italy)

• I did my bachelor and my master in Milan (Italy)

• I did my PhD in Oviedo

(Spain)

This is my first postdoc

ack

Alessandro Pini

LANT

OCEAN

Exact results in QFT

12 December, 2017 3 / 15

Free time activities

Running

Free time activities

I'm also learning how to play the classic guitar (but I'm still at the beginning).

Contents of the talk

- Seiberg-Witten theory. [N. Seiberg, E. Witten (1995)]
- The AdS/CFT correspondence. [J. Maldacena (1997)]
- Supersymmetric localization. [V.Pestun (2012)]

The Seiberg-Witten theory in a nutshell

[N. Seiberg, E. Witten (1995)]

We want to solve
$$\mathcal{N} = 0$$
 $\textcircled{\otimes}$
(UV) High energy perurbative QCD \Rightarrow (IR) Low-energy confinement
 $\mathcal{N} = 1 \quad B \leftrightarrow F$ $\mathcal{N} = 2 \quad B \leftrightarrow F \leftrightarrow B$
Let's consider $\mathcal{N} = 2$ $\textcircled{\otimes}$
(UV) $4d \quad \mathcal{N} = 2 \quad QFT$ \Rightarrow (IR) Exact low energy effective action

The AdS/CFT correspondence-holography

Dictionary

Observable in QFT \Leftrightarrow Observable in the gravity theory

• energy scale in QFT ⇔ radial coordinate in the gravity dual

Exact results in QFT

Supersymmetric QFT on a compact manifold \mathcal{M} (e.g. \mathbb{S}^d) with a supercharge \mathcal{Q}

Partition function

$$Z = \int \mathcal{D}[\Phi] e^{-S[\Phi]}$$

Infinite dimensional path integral over all the fields configuration $Z=\int da f(a)$

normal finite dimensional integral

 \Rightarrow exact observables computation in a supersymmetric QFTs

 \Rightarrow

Exact results in QFT

PhD research activity

- 5d N = 1 QFT are not renormalizable → fixed point theory, for a proper choice of the gauge group and of the matter content.
 [N. Seiberg (1995)], [K.A. Intriligator, D.R. Morrison and N. Seiberg (1997)]
- In some cases: enhancement of the global symmetry group at UV fixed point.

[N. Seiberg (1995)]

$$(V) \quad G_{UV} \rightarrow \text{RG flow} \rightarrow (IR) \quad G_{IR} \qquad G_{UV} > G_{IR}$$

• Gravity dual for $5d \mathcal{N} = 1 \text{ QFT} \Rightarrow study of holographic RG flows.$

[A. Brandhuber and Y. Oz (1999)],[O. Bergman and D. Rodríguez-Gómez (2012)]

PhD research activity

- The study of gauge theories on curved background → reaction to curvature measures different things: partition functions, index ...
 [V.Pestun (2012)]...
- Procedure that allows to define a SQFT on a curved background. [G.Festuccia and N. Seiberg (2011)]
 ⇒ study of 5d SQFT on a Riemann manifold.
- A particularly useful background: S¹ × S⁴ → computation of the Superconformal Index (SCI) of the theory.

[J.Kinney, J.M.Maldacena, S.Minwalla and S.Raju (2007)],[J.Bhattacharya, S.Bhattacharyya, S.Minwalla and

S.Raju (2008)],[H.-C. Kim,S.-S.Kim, K. Lee (2012)]

• Limits of the SCI \leftrightarrow subset of operators of the theory

[A.Gadde, L. Rastelli and collaborators (2012)] \Rightarrow particular limit limit of the 5*d* SCI.

PhD research activity

• The partition function takes the form

$$Z = \int Z_{pert} Z_{inst}$$

in the case of pure gauge theories (with 8 supercharges) Z_{inst} coincides with the Hilbert series of the instanton moduli space.

[D. Rodríguez-Gómez and G.Zafrir (2014)],[C.A.Keller,N. Mekareeya, J.Song and Y.Tachikawa (2012)]

• We can use string theory to study instantons on \mathbb{C}^2 . Higgs branch of a system of D_p and D_{p+4} branes (e.g. p = 3)

For the moment I will mostly focused on 4d QFTs.

- $4d \mathcal{N} = 2 \rightarrow 4d \mathcal{N} = 1$ [D.Gaiotto, S. Razamat (2015)]
- Discovery of 4*d* QFTs with N = 3 (Non Lagrangian theories!). [II. Garcia Etxabarria, D. Regalado (2015)
 - \rightarrow a lot of things to explore
 - Study of the SCI.
 - Seiberg-Witten curve.

THANKS FOR YOUR ATTENTION

4d \mathcal{N} = 2 prepotential and low energy effective action

The prepotential \mathcal{F}

$$\mathcal{F}(A) = \frac{1}{2}\tau_0 A^2 + \frac{i}{\pi} A^2 \log(\frac{A^2}{\Lambda^2}) + \frac{1}{2\pi i} A^2 \sum_{l=1}^{+\infty} c_l (\frac{\Lambda}{A})^{4l}$$

The low energy effective action

$$\frac{1}{4\pi} \operatorname{Imm}\left[\int d^4\theta \frac{\partial \mathcal{F}}{\partial A} \overline{A} + \int d^2\theta \frac{1}{2} \frac{\partial^2 \mathcal{F}}{\partial A^2} W_{\alpha} W^{\alpha}\right]$$

- QFT with a fermionic odd charge Q, such that $Q^2 = B$
- BPS observable $\mathcal{QO}_{BPS} = 0$
- we want to evaluate

$$\langle \mathcal{O}_{BPS} \rangle = \int_{F} \mathcal{D}[X] \mathcal{O}_{BPS} e^{-S[X]}$$

it holds that

$$\langle \mathcal{O}_{BPS} \rangle = \langle \mathcal{O}_{BPS} + \mathcal{Q}O \rangle$$

Supersymmetric localization 2

Let's consider the deformed path-integral

$$\langle \mathcal{O}_{BPS} \rangle = \int_{F} \mathcal{D}[X] \mathcal{O}_{BPS} e^{-S[X] - t\mathcal{Q}P_{F}[X]}$$

It holds that

$$\frac{d}{dt} \langle \mathcal{O}_{BPS} \rangle = 0 \quad \Rightarrow \quad t \to +\infty$$

the integral is dominated by the saddle points of the localising action

$$X = X_0 + \frac{1}{\sqrt{t}}\delta X \quad \Rightarrow \quad S[X_0] + \frac{1}{2}\int \int \frac{\delta^2 S_{loc}[X_0]}{\delta X^2} \mid_{X = X_0} (\delta X)^2$$