Jet substructure at the LHC

Lais Schunk

DESY New Fellows Day

12 December 2017

		-			
1 3	214	50	٦h		nk
	1.5	5		u	111

Jet substructure at the LHC

э

< □ > < 同 > < 回 > < 回 > < 回 >

- Brazilian
- Started undergrad at Sao Paulo University (Brazil)
- Finished undergrad at Ecole Polytechnique (France)
- Masters at Ecole Normale (Paris)
- PhD at IPhT, CEA Saclay; directed by Gregory Soyez in the subject "Understanding jet substructure at the LHC"

Now, physics...

		 	_			
	\mathbf{a}			 	n	
1.1.2	-		ы.	 		•
 _	-	 	-	 		

æ

< □ > < □ > < □ > < □ > < □ >

Motivation

- LHC pushes the energy boundaries and probes new theories *e.g.* Supersymmetry, nature of Dark Matter . . .
- Phenomenology does the connection between experiments (signals measured in detectors) and theoretical representation of particles

< A IN

Standard Model of Elementary Particles

What is a jet ?

- QCD partons \rightarrow never observed isolated due to confinement principle
- What happens instead :
 - \rightarrow QCD particles decays into other partons
 - \rightarrow observed as hadrons in collimated structures called jets
- Known for a long time in collider phenomenology

 \rightarrow first jet algorithm in the 70s

Boosted jets and substructure

		-					
2		5	0	h		n	Ŀ
а	13		S.		u		n

Jet substructure at the LHC

12 December 2017 6 / 22

3

4 E

Image: A mathematical states and a mathem

Boosted heavy particles

- At the LHC :
 - \rightarrow production of boosted heavy particles ($p_{t,jet} \gg m$)
 - ightarrow opening angle is $heta \sim m/p_{t, {
 m jet}}$
 - \rightarrow clustered into a single jet
- Collinear divergences \rightarrow QCD jets are collimated at any $p_{t, jet}$ range

Boosted heavy particles

- At the LHC :
 - \rightarrow production of boosted heavy particles ($p_{t,jet} \gg m$)
 - ightarrow opening angle is $heta \sim m/p_{t, {
 m jet}}$
 - \rightarrow clustered into a single jet
- Collinear divergences \rightarrow QCD jets are collimated at any $p_{t, jet}$ range

 How to discriminate QCD jets and W/Z/H hadronic decay jets? Use jet substructure methods → internal dynamics of the jet

12 N 4 2 N

A (1) > A (2) > A

Removes soft and large-angle radiation

J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008) M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)

	• 🗆	•	6	Þ	•	÷.	Þ	٠	Ð,	Þ	- 王	9	9
LHC					12	De	ece	ml	ber	201	7	8 /	/ 2

• Removes soft and large-angle radiation

J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008) M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)

- Break jet into two $j \rightarrow j_1 + j_2$
- Check condition min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut}

E 6 4 E 6

• Removes soft and large-angle radiation

J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008) M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)

- **1** Break jet into two $j \rightarrow j_1 + j_2$
- Check condition min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut}
- If fails, removes the subjet with lower p_T

(4 個) トイヨト イヨト

• Removes soft and large-angle radiation

J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008) M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)

- **1** Break jet into two $j \rightarrow j_1 + j_2$
- Check condition min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut}
- If fails, removes the subjet with lower p_T
- If passes, stop recursion

< □ > < □ > < □ > < □ > < □ > < □ >

Study of jet substructure

- Initially, jet substructure research based on Monte Carlo simulations
- Very useful tools, but numerically costly and physical message not always clear

- Pioneering work in analytical approach to jet substructure in 2013 Dasgupta, Fregoso, Marzani, Salam (2013)
- Understand dependency on each parameter
- Use insight from calculations to develop jet substructure
 → combining existing tools optimally
 → creating new tools
- Reliable evaluation of theoretical uncertainty bands

Phenomenological study of groomed jet mass

JHEP 1707 (2017) 132

2		20	h		n	~
				u		n

Jet substructure at the LHC

- ∢ /⊐ ▶

- Connection between measurements and calculations See also: Frye, Larkoski, Schwartz, and Yan, 2016
 CMS-PAS-SMP-16-010 and CERN-EP-2017-231
- Jet mass is one of the simplest observables
- Grooming eliminates part of UE contamination
- We studied modified MassDrop Tagger and SoftDrop

Our calculation

• For boosted jets $p_T \gg m \rightarrow \rho \equiv m/(p_T R) \ll 1$ $\rightarrow \log \text{ enhancements } \alpha_s^n \log^{2n}(1/\rho)$

Needs to be resummed at all orders

- For mMDT it becomes $[\alpha_s f(z_{cut}) \log(1/\rho)]^n$ at leading-log
- Compare with experiment \rightarrow needs a matching procedure:

$$\underbrace{N^{k}LL}_{\text{small }\rho} + \underbrace{N^{m}LO}_{\text{large }\rho}$$

Small $\rho \rightarrow$ resummation of large logarithms Large $\rho \rightarrow$ fixed-order (exact at $\mathcal{O}(\alpha_s^m)$)

Uncertainties and corrections

• Perturbative uncertainties

- Vary μ_R and μ_F around $p_{t,jet}R$
- Vary μ_Q around $p_{t,jet}R$
- Vary matching scheme (optional)
- Vary α_s freezing scale

Non-perturbative corrections

- Extract NP corrections from different generators and tunes
- Average of corrections as a multiplicative factor
- Envelope as uncertainty

Jet substructure at the LHC

Perturbative results at (N)LO + LL

- \bullet Going from LO \rightarrow NLO has large impact in uncertainties
- Smaller effects from resummation at NLO

			-				
	2	10	5	0	h	 n	Ŀ
-	- 21		-	S.			n

Final results LL + NLO

 Relatively small NP corrections (UE and hadronization) above m = 10GeV

Comparison to experiment

Good agreement with experimental measurements

Plot from CMS-PAS-SMP-16-010

Lais Schunk

Jet substructure at the LHC

Extension to Soft Drop (extra parameter $\beta > 0$)

- Leading contribution now is double-logarithm
- Our accuracy is NLL + NLO
- Non-perturbative effects increase for larger β values
- Good agreement with experimental measurements

Plot from CERN-EP-2017-231

Conclusion

			-				
	21	C	5	ch		n	1
_	aı		0	CI.	ıu		

3

- Analytical approach to jet substructure allows better understanding of techniques largely used in experiments
- **Resummation** have many other applications in particle physics *e.g.* Drell-Yan process
- During my postdoc here at DESY
 - \bullet **Phenomenological aspects** \rightarrow better and more reliable results
 - Learn more resummation techniques \rightarrow in particular effective theories : SCET, SCET+
 - Study matching techniques

Backup

		-				
21	IC.	5	c	h	n	k.
•		-	C 1			r

3

< □ > < □ > < □ > < □ > < □ >

Examples of jet substructure in experiments

• Search for Higgs boson in $H \rightarrow b\bar{b}$ decays.

CMS-PAS-HIG-17-010

• Temporary Diboson excess at the end of Run-I.

see also CMS-PAS-EXO-15-002

< < >>

• Signal and background for a 115 GeV SM Higgs.

Final results NLL + NLO, $\beta > 0$

 Non-perturbative effects increase for larger β values.