Composite PNGB Higgs at the LHC and Beyond

Oleksii Matsedonskyi

Naturalness workshop, DESY 2018

Outline

Definition

- CH Landscape
- Phenomenology:
 - Direct production
 - Indirect probes at low and high energy

* we identify the minimal number of necessary ingredients of the low-energy description, leaving aside possible UV completions

new EW-breaking sector confines at a scale ~f

1

• G/H gives ≥ 4 NGBs

- new EW-breaking sector confines at a scale ~f
- G/H gives ≥ 4 NGBs
- elementary (~SM) fermions couple linearly (mix) to vector-like partners

- new EW-breaking sector confines at a scale ~f
- G/H gives ≥ 4 NGBs
- elementary (~SM) fermions couple linearly (mix) to vector-like partners

- new EW-breaking sector confines at a scale ~f
- G/H gives ≥ 4 NGBs
- elementary (~SM) fermions couple linearly (mix) to vector-like partners
- SM gauge bosons couple to the new sector currents

- new EW-breaking sector confines at a scale ~f
- G/H gives ≥ 4 NGBs
- elementary (~SM) fermions couple linearly (mix) to vector-like partners
- SM gauge bosons couple to the new sector currents
- elementary composite couplings break G

custodial symmetry for T parameter

) custodial symmetry for Zb_Lb_L

some flavour symmetry for ϵ_K ?

tuning for $v \ll f$

) more tuning or light partners for m_h

Origin of tuning(s)

Higgs potential

 $V \sim \alpha f^2 h^2 + \beta h^4 \qquad \qquad \alpha \sim \beta \propto {\mathcal G}$

- Origin of tuning(s)
 - Higgs potential $V \sim \alpha f^2 h^2 + \beta h^4 \qquad \qquad \alpha \sim \beta \propto {\cal G}$
 - minimization:

$$h^2 = \frac{\alpha}{\beta} f^2$$
 hence $h \ll f \Rightarrow \alpha \ll \beta$

- Origin of tuning(s)
 - Higgs potential $V \sim \alpha f^2 h^2 + \beta h^4 \qquad \qquad \alpha \sim \beta \propto {\mathcal G}$
 - minimization:

$$h^2 = \frac{\alpha}{\beta} f^2$$
 hence $h \ll f \Rightarrow \alpha \ll \beta$

• with a tuning $\alpha = (v^2/f^2)\beta$ the Higgs mass is still too high

$$V \sim \beta(-v^2h^2 + h^4)$$

- Origin of tuning(s)
 - Higgs potential
 $V \sim \alpha f^2 h^2 + \beta h^4$ $\alpha \sim \beta \propto G$
 - minimization:

$$h^2 = \frac{\alpha}{\beta} f^2$$
 hence $h \ll f \Rightarrow \alpha \ll \beta$

• with a tuning $\alpha = (v^2/f^2)\beta$ the Higgs mass is still too high

$$V \sim \beta(-v^2h^2 + h^4)$$

• to decrease β :

more tuning

• since $\beta \propto G$, one can lower the elem-comp mixings Δ

but
$$m_t \sim \frac{\Delta^2}{m_T}$$
 hence m_T has to be low as well

 $51^{(2)}$, $50^{(2)}$, $50^{(2)}$, $50^{(2)}$, $50^{(2)}$, $6^{(2)}$, G/H

observed quarks are partially composite

```
t_L = \cos \phi_L t_L + \sin \phi_L T_L
```

- ffV couplings
- 4f operators
- flavour physics

observed quarks are partially composite

$$t_L = \cos \phi_L t_L + \sin \phi_L T_L$$

- ffV couplings
- 4f operators
- flavour physics

$$\tilde{T} T \rho_{\mu}$$

- collider searches for new states
- Dark Matter
- cosmological phase transitions
- S, T parameters

observed quarks are partially composite

$$t_L = \cos \phi_L t_L + \sin \phi_L T_L$$

- ffV couplings
- 4f operators
- flavour physics

new resonances: fermions, vectors and scalars

$$\tilde{T} T \rho_{\mu}$$

- collider searches for new states
- Dark Matter
- cosmological phase transitions
- S, T parameters

• h is a pNGB

$$h \to f \sin \frac{h}{f} = h - \frac{h^3}{6f^2} + \dots$$

 $G \to H$

- h

 ho_{μ}

 J_{μ}

 q_L

 t_R

observed quarks are partially composite

$$t_L = \cos \phi_L t_L + \sin \phi_L T_L$$

- ffV couplings
- 4f operators
- flavour physics

new resonances: fermions, vectors and scalars

$$\tilde{T} T \rho_{\mu}$$

- collider searches for new states
- Dark Matter
- cosmological phase transitions
- S, T parameters

EW couplings modifications

- ffV couplings - S,T
 - TGCs

Most direct way to probe the strong dynamics - produce its bound states

• Most direct way to probe the strong dynamics - produce its bound states

Fermionic partners:

Have to be EW and QCD charged

Often predicted to be much lighter than other resonances

6

• Current bound $m_X > 1.3 \text{ TeV}$ CMS-PAS-B2G-17-008

Future LHC projections OM,Panico,Wulzer [1512.04356]

• FCC-hh $m_X > 6 \text{ TeV} (1 \text{ab}^{-1})$

Panico, Riembau, Vantalon [1712.06337]

7

EW-charged spin-1 resonances

• couplings to mostly elementary SM states $\propto g_A/g_
ho$

$$\mathcal{L}_{mass} \sim g_{\rho}^2 \, \rho_{\mu}^2 + g_{\rho} g_A \, \rho_{\mu} A^{\mu}$$

 $A_{\mu} \rightarrow A_{\mu} + (g_A/g_{\rho})\rho_{\mu}$

 longitudinal g.b. (~composite states) have a larger coupling. To see this we can e.g. "undo" the Unitary gauge on g.b. only

$$g_A A_\mu \to g_A A_\mu + \partial_\mu \pi$$

new interactions grow with energy and are not g_A suppressed

• despite the previous enhancement, the LHC production is dominated by Drell-Yan due to low A_L luminosity

Falkowski, Grojean, Kaminska, Pokorski, Weiler [1108.1183] Pappadopulo, Thamm, Torre, Wulzer [1402.4431]

• current bound $m_{\rho} \gtrsim 3 TeV \ (g_{\rho} = 3)$ CMS[17

CMS[1708.05379] ATLAS[1708.09638]

Higgs couplings

LO Higgs couplings modifications wrt SM

• come from the Higgs "geometric" origin.

$$h \to f \sin \frac{h}{f} = h - \frac{h^3}{6f^2} + \dots$$

• are of order
$$v^2/f^2$$

• will be constrained to $\sim 10\%$ at the LHC and to $\sim 1\%$ at future lepton machines

Precision physics

The leading operators affecting the LEP measurements are
 universal

 $S \sim \Pi'_{BW_3}(0)$ $T \sim \Pi_{W^{\pm}}(0) - \Pi_{W_3}(0)$

non-universal Zbb coupling modification

affect the definition of the minimal CH

Precision physics

The leading operators affecting the LEP measurements are
 universal

 $S \sim \Pi'_{BW_3}(0)$ $T \sim \Pi_{W^{\pm}}(0) - \Pi_{W_3}(0)$

non-universal Zbb coupling modification

affect the definition of the minimal CH

Precision physics

The leading operators affecting the LEP measurements are
 universal

 $S \sim \Pi'_{BW_3}(0)$ $T \sim \Pi_{W^{\pm}}(0) - \Pi_{W_3}(0)$

non-universal Zbb coupling modification

affect the definition of the minimal CH

• in the same channels **LHC** will only slightly improve on S and T

Any way to benefit from high c.o.m. energy @ LHC?

energy-growing operators in quark production

 $W, Y \sim (D_{\mu}F^{\mu\nu})^2 \sim p^4 A_{\mu}^2$ vs $S \sim (HD_{\mu}H)(D^{\nu}F^{\mu\nu}) \sim v^2 p^2 A_{\mu}^2$

Any way to benefit from high c.o.m. energy @ LHC?

energy-growing operators in quark production

 $W, Y \sim (D_{\mu}F^{\mu\nu})^2 \sim p^4 A_{\mu}^2$ vs $S \sim (HD_{\mu}H)(D^{\nu}F^{\mu\nu}) \sim v^2 p^2 A_{\mu}^2$

 $D_{\mu}F^{\mu\nu} \to \bar{q}\gamma^{\nu}q + \dots$

Any way to benefit from high c.o.m. energy @ LHC?

energy-growing operators in quark production

 $W, Y \sim (D_{\mu}F^{\mu\nu})^2 \sim p^4 A_{\mu}^2$ vs $S \sim (HD_{\mu}H)(D^{\nu}F^{\mu\nu}) \sim v^2 p^2 A_{\mu}^2$

$$D_{\mu}F^{\mu\nu} \to \bar{q}\gamma^{\nu}q + \dots$$

$$q \longrightarrow q$$

$$\bar{q}$$

$$\bar{q}$$

HL-LHC reach Farina et al[1609.08157]

 $Y, W \lesssim 10^{-4}$

one more order of magnitude at CLIC

13

Any way to benefit from high c.o.m. energy @ LHC?

• 4-fermion (non-universal) operators, sensitive to top compositeness

$$\epsilon_q^2 g \frac{1}{m_\star^2} \left(\bar{q} \gamma_\mu q \right) (D_\nu F^{\mu\nu}) \quad \to \quad \epsilon_q^2 g^2 \frac{1}{m_\star^2} q^4$$

• currently not very constraining, but can become important e.g. at **CLIC**

OM,G.Durieux

Any way to benefit from high c.o.m. energy @ LHC?

energy growth of SM-BSM interference terms with longitudinal g.b.

Franceschini et al [1712.01310] DaLiu,Liao-Tao Wang [1804.08688]

Any way to benefit from high c.o.m. energy @ LHC?

energy growth of SM-BSM interference terms with longitudinal g.b.

Franceschini et al [1712.01310] DaLiu,Liao-Tao Wang [1804.08688]

• at HL-LHC can become comparable (and complementary) to LEP

Conclusion

• CH - one of the few ways to naturally explain EW scale ...

• ... up to a (not extreme) tuning.

Gives a variety of currently testable predictions.

High-energy machines offer new precision tests.

• So far no experimental signals, but can be nearby.