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The discovery of 125 GeV Higgs sharpens the question of Naturalness:
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One can rephrase the Naturalness problem in terms of quantum criticality:
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the critical line.

Theorists could come up with (pretty much) only two examples of such
enhanced symmetries:

e Bosonic symmetry: the (spontaneously broken) global symmetry.
The Higgs is a pseudo-Nambu-Goldston boson and the model goes by the

name of “composite Higgs models.”

e Fermionic symmetry: the (broken) supersymmetry.



e supersymmetric theories are all built upon a minimal lagrangian

-- the MISSM:
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This is the minimal lagrangian the makes standard model
supersymmetric.



On the other hand, the theory space of a composite Higgs looks huge:

G H C Ng Iy = rsue)xsu() (Tsu@xua)) Ref.
SO(5) SO(4) v 4 4=(2,2) [11]
SU(3) x U(1)  SU(2) x U(1) 5 2.12+ 10 [10,35]

SU(4) Sp(4) v 5 5=(1,1)+(2,2) 129,47,64]
SU(4) SU@Q)2xU@1) v* 8 (2,2)12=2-(2,2) 65

SO(7) SO(6) v 6 6=2-(1,1)+(2,2) —
SO(7) G, v T 7=1(1,3)+(2,2) 166]
SO(7) SO() x U(1) v* 10 100 = (3,1) + (1,3) + (2,2) —
SO(7) SU(2))? v 12 (2,2,3) =3-(2,2) —
Sp(6) Sp(4) xSU(2) v 8 (4,2) =2-(2,2) 165
SU(5) SUM4)xU(1) v~ 8 4 5+4,.5=2-(2,2) 67
SU(5) SO(5) v 14 14 = (3,3) + (2,2) + (1,1) 19/47,49
SO(8) SO(7) v T 7=3-(1,1)+(2,2) =
SO(9) SO(8) v 8 8=2-(2,2) 67
SO(9) SO(5) x SO(4) v* 20 (5,4) =(2,2)+ (1+3,1+3) 34
[SU(3))2 SU(3) 8 8=1¢+2.1/2+30 I
[SO(5)]? SO(5) v 10 10 =(1,3) + (3,1) + (2,2) FL
SU(4) X U(l) SU(3) X U(].) 7 3_1/3 + §+1/3 +1p=3:1p+ 2:1:1/2 3'
SU(6) Sp(6) v o4 14=2-(2,2)+(1,3) +3-(1,1) 130,47
[SO(6)]? SO(6) vV 15 15=(1,1)+2-(2,2) + (3,1) + (1,3) 136

Table 1: Symmetry breaking patterns G — H for Lie groups. The third column denotes whether the
breaking pattern incorporates custodial symmetry. The fourth column gives the dimension Ng of the coset,
while the fifth contains the representations of the GB’s under H and SO(4) = SU(2);, x SU(2) (or simply
SU(2), x U(1)y if there is no custodial symmetry). In case of more than two SU(2)’s in H and several different
possible decompositions we quote the one with largest number of bi-doublets.

Bellazzni, Csaki and Serre:1401.2457



Construction of effective Lagrangians for composite Higgs bosons relies
on the CCWZ formalism:
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e CCWZis avery geometrical approach:

One decides on a nonlinearly realized group G, and a subgroup H of G
that is linearly realized.
We say G is the broken group and H the unbroken group:

e The “pions” are the coordinates on the coset manifold G/H, and the
action of the full group G on pions is complicated and nonlinear!
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9¢=¢&U(g,¢), U(g,§)eH



e CCWZis avery geometrical approach:

One decides on a nonlinearly realized group G, and a subgroup H of G
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We say G is the broken group and H the unbroken group:

e The “pions” are the coordinates on the coset manifold G/H, and the
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9§=¢U(g,8), U(g,§) €H
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No one dared asking/working out what this mess is.



CCWZ thus looked for objects that have “simple” transformation
properties under the action of G.

These are contained in the Cartan-Maurer one-form:
10,6 = iDIX*+iET" =iD, + i€,

They are the “Goldstone covariant derivative” and the “associated gauge
field”,

D,—UDU", & —UEU - (0,U) U}

upon which the complete effective lagrangian can be built (apart from
the topological terms)

2
Logy = 5 TDD" + -+



In composite Higgs models, CCWZ gives the effective action right below
the cutoff scale:
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e At low energies, CCWZ is “matched” to the SILH lagrangian:

Lsiin =
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Giudice, Grojean, Pomarol, Rattazzi: hep-ph/0703164



NLSM contribution to SILH coefficients for some of the composite Higgs
models:

SU(5)/S0(5) Littlest Higgs: ¢\7) = 7, &=

SO(5)/SO(4) minimal composite Higgs (MCHM): cg) 1, (“(7?) 0

ag 1 ag
e S0(9)/SO(5)xSO(4) littlest Higgs: ¢\5) = 2 &) =
SU()  [SU(2) x UL x [SU2) x U(1)]r L (o) 1 (o)
* Sop) [SU@2) x U(D)]y T-parity: ¢y’ = 6’ ‘r = 0

c; is dictated by the custodial symmetry. However, ¢, is different for
different coset.



CCWZ is extremely powerful, but it adopts a “top-down” perspective,
which requires knowing the broken group “G” is in the UV.

It also implies each G/H gives a different effective Lagrangian!

Each time a young hot shot comes up with a new composite Higgs
model, we need to work out the experimental consequences all over
again.



CCWZ is extremely powerful, but it adopts a “top-down” perspective,
which requires knowing the broken group “G” is in the UV.

It also implies each G/H gives a different effective Lagrangian!

Each time a young hot shot comes up with a new composite Higgs
model, we need to work out the experimental consequences all over
again.

This begs the question:

Are there universal predictions of a composite Higgs boson that are
independent of the symmetry-breaking pattern?



To this end, let’s recall that NLSM is all about the presence of non-trivial
vacua:

Goldstone bosons are long-range degrees of freedom that connect
different vacua!

It then seems a little odd that their interactions would care about the
broken group G in the UV!



The IR perspective was pursued vigorously in the context of pions in the
‘60s by Adler, Nambu, Goldstone, Weinberg, etc.

This body of work was collectively known as “soft pion theorems,”
although a significant part of them does not depend on the particular
symmetry breaking pattern!



e one particularly important “soft-pion” theorem is the Adler’ s zero
condition:

on-shell scattering amplitudes of Goldstone bosons must vanish in the

limit the momentum of one Goldstone boson is taken off-shell and
soft.

e often this is over-simplified as saying “the Goldstone boson is
derivatively coupled.”

it is an over-simplification because it doesn’t do justice to the full
power of the Adler’s zero condition.



| would advocate promoting Adler’s zero condition to be the defining
property of Goldstone bosons:

Nambu-Goldstone bosons are defined by the Adler’s zeros and their
transformation property under the unbroken group in the IR.



The Adler’s zero is a direct consequence of nontrivial degenerate vacua.

Recall the different vacua are related by
a rotation in the broken direction:

e?16,) = 10 + 6)

Excitations along the broken direction gives the Goldstone boson,
ctp(x)+0) 00) = oo () 0o + 6)

But the physics is invariant whether one chooses |0o) or [0 + 0)
NLSM possesses a constant “shift symmetry”!
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For an arbitrary coset G/H, consider 4-pt scattering amplitudes among
Goldstones of the same “flavor”,

e Adler’ s zero condition forbids a constant term!

A(rn® = n%1%) =a (p1-p2) + 0 (p1 - p3) + ¢ (p2 - p3)
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For an arbitrary coset G/H, consider 4-pt scattering amplitudes among
Goldstones of the same “flavor”,

e Adler’ s zero condition forbids a constant term!
A(rn® = n%1%) =a (p1-p2) + 0 (p1 - p3) + ¢ (p2 - p3)

e Bose symmetry impliesa=b=c!
A(mrm® — 17 = O(p*)

The argument can be generalized to n-pt amplitudes to show that O(p?)
term always vanishes!

A(ron® .o = 7% ) =alpy + -+ pn)? + O(p*)
= 0"



The effective Lagrangian, when all other Goldstones are turned-off, is
very simple:

L(m*=0,i#a)= % L TOTY + O(0%)

At the Lagrangian level, this can be achieved by requiring a constant
“shift symmetry”:

¢ — 7%+ e
The derivative of pion has simpler transformation under the shift
symmetry:

a a
0,m" — 0,



We have learned a simple yet powerful statement that is universal in
NLSM:

For any coset G/H, self-interactions among Goldstones of the same
flavor are fixed by Adler’s zero condition and Bose symmetry, and
must have the form:

: 1
L(m"=0,1#a)= 5 L TOTY + O(0)



The goal --
Construct an effective Lagrangian satisfying the following two properties:

e The Lagrangian for Goldstone bosons of the same flavor reduces to
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when all other flavors are turned off.



The goal --
Construct an effective Lagrangian satisfying the following two properties:

e The Lagrangian for Goldstone bosons of the same flavor reduces to

L' =0,i#a) = % L TOTY + O(0)

when all other flavors are turned off.

e |nvariance under the unbroken group H.

When there are multiple flavors of Goldstones, higher order terms
appear in the shift symmetry.



Let’s consider two flavors of goldstones transforming as a complex
scalar under an unbroken U(1):

¢ = (m —I—i7r2)/\/§ - e
The shift symmetry at NLO can be written as

b =+ e— (67D — (")

f2 f2

When we turn off one of the two flavors , we must return to the
single flavor case, ;. -> 7, + ¢,



This is the generalization of constant shift symmetry:
¢ ¢ =d+e— P(qﬁ*e—e*qﬁw
The question:

What is the Lagrangian that is invariant under the generalized shift
symmetry?



We can do it by brute force, or we can try to be a little more clever...



We can do it by brute force, or we can try to be a little more clever...

Let’s look for objects that have simple transformation properties under
the general shift symmetry:

Du¢ — D'u¢, — ei(x ’lL(Cb,C)/f D,u,¢

Then the effective Lagrangian can be built straightforwardly.



e By demanding the Adler’s zero and invariance under the unbroken
U(1), we can write down

dq

D/L¢ — a/J,Qb - F(¢ 8,u¢* - 8“(]5 (Z)*)Qb

e the form is again fixed by reducing to the single flavor case:

D¢|7'('2:O — :uﬂ-l



When all is said and done, the leading two-derivative Lagrangian can be
obtained:

£ D,.¢* D¢

= 9,8"0"¢ — %lw* 6 — 0,0 &>+ O(1/F4)

which is invariant under

b ¢ =6 +e— L(de—€0)o

f2



The surprise is this procedure can be continued order-by-order in 1/f:

D“Qb_amww*qb—auw*( [ ¢|>

2|o|?

L? = D, ¢D"¢ = 0,6"0" ¢ — |

" ¢ — 0u ¢ f2 o lel
4g]7

Low: 1412.2145
Low: 1412.2146



The surprise is this procedure can be continued order-by-order in 1/f:

Dw_amwam*qb—auw*( [ ¢|>

2|o|?

L® = D,¢D"¢ = 9,6 9"¢ — 94" ¢4‘_¢|2“¢ s (1 g ¢>

e We managed to derive the effective Lagrangian without referring to
any UV coset!

e There is only one undetermined parameter in the end, which
corresponds to the overall normalization of f:

f — f/\/a Low: 1412.2145

Low: 1412.2146



e the sign of ¢, is not fixed:

a positive sign implies a compact G/H (suppression), while a negative
sign implies a non-compact G/H (enhancement).

e if UV completion is a concern, ¢, >0 and the sign of the dim-6
operator is negative.

f=f/Voer



e one could introduce another object that transforms non-
homogeneously like a gauge field:

E, e MEM —ie e =&, + Ju(d,e)

iau¢* ¢ T au¢ ¢* Sin2 @

£ = |
Yoo |92 2f




Let’s pause for a moment and reflect on what’s happened...

We derived the two-derivative lagrangian for a complex Goldstone
boson charged under an unbroken U(1):

O.0*d— O *|2
2 — D“qﬂ)”gb:é’uqb*@”gb— ‘ u¢ ¢4‘¢’2u¢¢ ‘ (1 . Wsm ¢>

The only assumptions are

1.The Adler’s zero condition.
2.There exists an unbroken U(1).

As such, this is the universal lagrangian among all NLSM containing a
complex Goldstone!



We can check against the universality using explicit examples:

D) e f2 6000 600"+ o 167046 — 00,0° 0P
o oot 313
SU(5)/S0(5) — 9,2 — 48f2 9*0, — 93, %] + 14410f4 5*0, — B, | D
—m@*a@—@aﬂ*\?@yu--- : (3.19)

At the first glance the two Lagrangians do not look the same...



We can check against the universality using explicit examples:

1 * * 8 * *
SU@)/U() = 10481 = 5755167040 = 00,0"|" + 557 16" 00 — 000" I”
16 * *
_315f6 \qﬁ Mgb_ ¢8M<b ‘2 ‘¢‘4 T, (3'18)
2 1 * o * |2 1 * o %2 2
SU5)/SO() — |00 ~ fo7 [°0u@ — 90,0 + [y [9°0,@ — 20,0 |2
1 * . %12 4 L
So51075 |2 On® — @0 P |l - (3.19)

At the first glance the two Lagrangians do not look the same...

But upon f -> 4f in SU(2)/U(1) case, the two become identical!



This approach can be generalized to a general unbroken group H in the
IR.

We assume a set of scalars furnishing a linear representation under a
simple Lie group H:

(x) = 7 (x) + iozi(Ti)abwb(x)

It is convenient to choose a basis where all generators are purely
imaginary (and hence anti-symmetric!)

(THT = —T' and (TV)* = —T"



Requiring

e The Adler’s zero condition
e Unbroken H-invariance is linearly realized

We can derive the effective Lagrangian to all orders in 1/f:

1 . b Tav = (T")ar (T") " 7°
L = S[Fo(T) ]y D d*m
Py(T) = = r

The Lagrangian is invariant under the shift symmetry:

1 = 7%+ [Fi(T)]ap €° F(T)=VTcotT

IL and Zhewei Yin: 1709.08639
IL and Zhewei Yin: 1804.08629



Requiring

e The Adler’s zero condition
e Unbroken H-invariance is linearly realized

We can derive the effective Lagrangian to all orders in 1/f:

1 5 | ; Tab = (T ar (T") o 7°
L= i[FQ(T) Jap Opm@OPT
Fy(T) = S”;g

The Lagrangian is invariant under the shift symmetry:

1 = 7%+ [Fi(T)]ap €° F(T)=VTcotT

All this is achieved using only IR data, without recourse to a coset G/H!

IL and Zhewei Yin: 1709.08639
IL and Zhewei Yin: 1804.08629



In essence, the IR approach is “boostrapping” the NLSM amplitudes from
Adler’s zeros:

Starting from a lower point amplitudes, construct the higher point
amplitudes such that the Adler’s zero is satisfied, by introducing the

necessary higher point vertices.



Starting from 4-pt amplitude:

p—1—>——|——<—— _P824

sij = (pi + ;)"
Pl = (pi +pj +pi)°




Starting from 4-pt amplitude:

I

Y
— >~ 4 - " _%824 sij = (pi +pj>2
B } Pfjk = (pi + pj + pi)?

| D2

The 6-pt amplitude built out of 4-pt amplitude doesn’t have the correct
soft limit (Adler’s zero),

1 [(s12 + s23)(s45 + S56) N (s23 + s34)(s16 + S56) N (834 + s45)(s16 + S12)

Y 2 2 2
f P123 P234 P345

, P4 , P3 , D5 , P4 , Pe , P5

I I I I I I

Y Y Y Y Y Y

I I D2 I I b3 b1 I I D4
-->»-+4+-<-+4-=<-- -->» -4+ -<-+4-=<-- -->» -4 -<-+-=<--
D5 1 1 D6 1 | I I

A A A A A A



Starting from 4-pt amplitude:

I

sij = (pi + ;)"
(pi + pj + Pr)’

+ b3 18
riaaiin iinale 25 b2

| D2

The 6-pt amplitude built out of 4-pt amplitude doesn’t have the correct

soft limit (Adler’s zero), unless a 6-pt vertex is added:

1 [(s12 + s23)(s45 + S56) N (s23 + S34)(S16 + S56)

(834 + s45)(s16 + S12)

4 2 2 2
f P123 P234 P345
1
+F (812+823—|—S34+S45—|—856—|—816)
| P4 | b3 D5 D4 D6 5 , D6
1 1 1 1 1 1 |
\ \ Y Y \ Y Y
[ 1 b2 [ [ b3 h ! ! P4 b1 I b5
-->-4+-<-+4-<-- -->-4+-<-+4-<-- -->-4-<-+4+-<-- -—->» -4k -<--
Dbs I I De I I I I /0N
A A A A A A A SN
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One common ingredient among all composite Higgs models are

e The unbroken group H contains an SO(4).

e The 125 GeV Higgs transforms as the fundamental representation of
SO(4).

We conclude that the NLSM Lagrangian involving the 125 GeV Higgs in all
composite Higgs models is universal, up to the normalization of the “f”.
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But this is only half of the story.

A=Adrf NLSM based on G/H
I SNLsM  <4mmmm  Universal among all G/H
m, = g,f composite resonances
I SSILH
v~ 246 GeV 125 GeV Higgs

Recall that the composite resonances are model-dependent. How can we
make a statement on the EFT below the scale “f”??



Here we are “rescued” by the most important insights from SILH:

1. Each extra Goldstone leg is weighted by a factor 1/f. For instance the addition of two
Higgs doublet legs involves the factor HTH/ f2.

2. Each extra derivative is weighted by a factor 1/m,. When the SM subgroup is weakly
gauged, the replacement 9, — 0, + ¢4, = D, is in order; this same rule implies that

each extra insertion of a gauge field strength F,, = —i[D,, D, | is weighted by a factor

1/m?2.

3. Higher-dimensional operators that violate the symmetry of the o-model must be sup-
pressed by the same (weak) coupling associated to the corresponding renormalizable

interaction in the SM Lagrangian (e.g., Yukawa couplings y; and quartic Higgs cou-

pling \).

Giudice, Grojean, Pomarol, Rattazzi: hep-ph/0703164
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But otherwise the nonlinearity structure of the CCWZ Lagrangian is
preserved in SILH, even after integrating out the composite resonances!
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e Construct the CCWZ Lagrangian based on G/H.

e Below the scale “f”, after all resonances have been integrated out,
make the replacement:
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But otherwise the nonlinearity structure of the CCWZ Lagrangian is
preserved in SILH, even after integrating out the composite resonances!

Instructions from SILH:
e Construct the CCWZ Lagrangian based on G/H.

e Below the scale “f”, after all resonances have been integrated out,
make the replacement:

A=A4Arf = m, = g,f
In the end, SILH inherits the universal nonlinearity from CCWZ:

4

L= %” LOW,®,8/m,) +
p

4
g, ,
(4m)?

g
(4m)*

LOU,®,0/m,) + LU, ®,0/m,) + ...



The leading two-derivative universal Lagrangian in the unitary gauge:

g*f?

1
L2 = 5 0uhdh+ = sin?(0 + h/f)
1
+ 17— p
X (WM W=+ 5 oos? OWZ“Z )

1 h?

T2

1
X (m%,VW/]LW_“ + ﬁmZZZﬂZ“> ,

sinf =

v/f

§=v?/f?

= —9,hd"h + [1+2 1—§%+(1—2g)v—2+---]




The leading two-derivative universal Lagrangian in the unitary gauge:

g f?

1
5(2):§8Mh8“h+ ] sin?(6 + h/f) sinff = v/f
_ 1 £ =v%/f?
+ 2 K
X (Wu W=+ 3052 O 2,7 )

—18 ho*h+ |1+ 2 1—§é+(1—2§)h—2+
e v V2

1
Y (mng,jw—u imQZZMZ“) ,

Recall that sin B is related to the normalization of “f” and thus coset-
dependent.

Once it’s measured, the rest of the h"VV couplings are fully determined!



It is clear now what the strategy is:

Measure one single parameter “sin 8” in hVV coupling as the input, and
use it to predict other h"VV couplings, n > 2.

For examples, if we define in the SILH Lagrangian

A 1
gfﬁ? (—) (m%VW;W_“ + §m2ZZMZ“>
v

Then one universal prediction of the Higgs nonlinearity is
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(2)  JT=¢
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But this is just one of the many universal predictions.

The overarching goal should be to “over-constrain” the predictions using
as many observables as possible.

We can get more observables by going to VV -> nh scattering with n>3.
But the rate obviously works against us, even in a future high energy
collider.



But this is just one of the many universal predictions.

The overarching goal should be to “over-constrain” the predictions using
as many observables as possible.

We can get more observables by going to VV -> nh scattering with n>3.
But the rate obviously works against us, even in a future high energy
collider.

Alternatively, we can stay with VV -> nh channel, with n < 2, by exploiting
angular observables. However, this requires going to O(p*) in the SILH
Lagrangian.



There are 11 operators at O(p*). We focus on those 6 that do not contain
the epsilon tensors:

01 = (d%d"*)*, O = (d2d%)?
L \i1? R \* 2
0s = |(EL)'] - (BR)] .
Of = —idsd [(FEI)' Th = (fhF) TR] .
2

0¢ = [(fm)]*, 05 = [(FE) — [

Contino et. al.; 1109.1570

These operators were enumerated previously, but not computed.



Like the two-derivative Lagrangian, they can also be expressed entirely
using only IR data:

dg,(m,0) = [fz(T)]abaqua

B (m,0) = fi T Fa(T)ab(Ti)?
(F2)" = [Fa(T)]ap(Tim)? FE,

1

(f)' = FFZV(Tj ™) [ Fa(T)]ap(T"7)°

Fo(T) = Sir\l/g Fu(T) =

Da Liu, IL, Zhewei Yin: 1805.nnnnn



We then worked out the complete predictions in hVV couplings:

Interaction Z Ch (NL) Ch (D6)
om¥, bww 1—¢ 1— 2cpé
mZ Ew fw—r VI—¢E 1— tepé
_ 4(—2c3 + ¢, )
1) twfprw, 4 2(cw + ¢
(1) Wy e cos (ew +caw)
—4 <c+ — 2c+) cos 0
(2) Awiw—m A - 2cHw
—4(c; +2cy)
o (1)
3 hZ DHV 7 CgW 23 + K 2cw + CcHwW
+c§ c, cosf +2ty (cB +cuB)
W
— 022 (c;f — 20?) cos
(4) %Z;WZ“V 92W _ _ '(CHW + tgw CHB)
— = (04 + 205 ) C20y,
fw
(5) bz, D A, 8 (—2C3 n c;) to,, | 2towlew +enw)
—2toy, (cB + CcHB)
(6) %ZMVA’“’ -4 (CZ + 2(:;) Loy, Loy, (cuw — cuB)

TABLE I: Single Higgs coupling coefficients C}* for the non-
linearity case (NL) and the purely dimension-six case (DG6).
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And hhVV couplings:

5 2 p; 2
Interazctlon Ih CPF (NL) Ch” (D6)
m, b Wiw 1—2¢ 1—2ché
Lm2 b Wiw—n 1-2¢ 1— 2cy€

2 - 2(—2c3 + ¢, ) cos b
1) bwiprw, 4 ew +c
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(2) %WJIJW—#V R - CHW
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w(_
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2
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-3(caw + 15 cHB)
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h2 2%
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(6)
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2
(1) CePlwirw—u 16¢cy
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OF v’;) Zpz* 028 341
fw
(10) Zen2eh Zuzv ot
%74

TABLE II: The coupling coefficients C’ihz involved two
Higgs boson for the non-linearity case (NL) and the purely
dimension-six case (D6).
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TABLE II: The coupling coefficients C’ihz involved two
Higgs boson for the non-linearity case (NL) and the purely
dimension-six case (D6).
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And TGC couplings:

Interaction Z; Coefficients C32V TGC
— W) B 8ct 3
2 -
19Coyy W:W_‘“’Z,, ng (—263 +cy ) cos 6 5912
~+h.c. _+_ng le_
W
—*— (2¢3 — ¢; ) cos @
igcow WHW "2, o Sk
9Cow K N 022 (CIC20W + 40;83“,) Z
Sw
ieW+uw—VAW —4 (cj{ - 205*) Shry
——2 cfcosf
ighwiwmz “Ow
vl Y| 4+ (2c3 — cg)(1 + 3 cos 20)
+h.c. igv .

C Cx —C
CGW(3+5 5

cosf)cj.,

ietWiw A,
+h.c.

—16(c3 + c5 — ci cosb)

gEWTEW TV Z,

2_(4c3 — 2c¢ ) cos® 0
CeW
+-2(—2c3 +c; ) sin? @
CGW
+16¢coy, (c3 + ¢35 )
— 2 (4cd + cfcopyy ) cos O

C9W
ielWHHFW Y AL 16(c3 + c5 ) — 8c4 cos@
. v+ Tar— Y h —86_*—00.8—29
ig W[/J'Wy] B* ~ 4 sin6

+8228 (2c5 — c; + 3cssin® )

TABLE IIT

: Triple gauge boson couplings.
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There are many predictions:

h2 h2
Ci—lcosﬁ Ci—lcosﬁ
h ) h
2 2
h2 C? h? Cg
OV — standw _ cos 20 CY — tanbw _ cos20
Ch _ ct 2cosf’ Ch _ Cég 2 cos b
1 2 tan Oy 2 tan Oy
2 2
h2 Cé’ cos 20w h?2 Cg cos 20w
O3 — tanow _ cos20 Cf — Stanow _ cos20
Ch _ Cl cos 20w 2cosf’ Ch _ Cl cos 20w 2 cos 0
3 2tan 0W 1 2tan HW
n__Cct
Cl 2 tan Oy — COS 0
C’gL cos 6

A
2097 cos? Oy — T tan O
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This is in sharp contrast with SMEFT with arbitrary coefficients,

. (_) -/ (_)
Ow = % (HTa“ D“’H) D'W?%,, Op= % (H‘f D “H) 8" B,,

Onw =ig(D*H)'¢*(D*HYW?,, Opnp =ig (D*H)"(D"H)B,,

h Cy
B Ci - 2tanfOw N1_16W+CHW_CB—CHB€
~7 CP cos6 C C

While universal nonlinearity predicts

h
ch Y5
1 2 tan Ow

1
2008921—§§+“'

Cé‘ cos 6
2 tan Oy

20G%7 cos? Oy +
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Concluding Remarks:

e The Adler’s zero should be taken as the defining property of Nambu-
Goldstone bosons. Goldstone nonlinear interactions are universal
among a common unbroken group H in the IR.

e All composite Higgs models contain a common universal Lagrangian
(the symmetry-preserving part.)

e The universal nonlinearity predicts all Higgs couplings to VV with only
one free parameter, reflecting the normalization of “f”.

e Testing these relations should be among the top priorities in future
experimental programs involving the 125 GeV Higgs.



