EW Baryogenesis in Composite Higgs models

Sebastian Bruggisser

In collaboration with: T. Konstandin & O. Matsedonskyi & G. Servant & B. von Harling

arXiv: 1706.08534, 1803.08546 1804.07314

• Baryon number violation

- Baryon number violation
 - Electroweak Sphaleron

- Baryon number violation
 - Electroweak Sphaleron
- CP violation

- Baryon number violation
 - Electroweak Sphaleron
- CP violation
 - Dynamical CP violation from varying Yukawas

- Baryon number violation
 - Electroweak Sphaleron
- CP violation
 - Dynamical CP violation from varying Yukawas
- Out-of-equilibrium

- Baryon number violation
 - Electroweak Sphaleron
- CP violation
 - Dynamical CP violation from varying Yukawas
- Out-of-equilibrium
 - Strong first-order electroweak phase transition

In the SM: not first order

In the SM: not first order Yukawa variation:

Baldes, Konstandin, Servant '16

In the SM: not first order Yukawa variation:

Singlet extensions:

Baldes, Konstandin, Servant '16

Espinosa, Gripaios, Konstandin, Riva '11

In the SM: not first order Yukawa variation:

Baldes, Konstandin, Servant '16

Singlet extensions: Konstandin, Riva '11 Minimal Composite Higgs: Joint confinement-electroweak phase transition

 $\langle h \rangle = 0$ $S_i^{CPV} \sim \text{Im} \left[V^{\dagger} (m^{\dagger})'' mV \right]_{ii}$ \checkmark^{QL} where V s.t. $V^{\dagger} m^{\dagger} mV$ is diagonal

 $\langle h \rangle = 0$ $S_i^{CPV} \sim \text{Im} \left[V^{\dagger} (m^{\dagger})'' mV \right]_{ii}$ \mathcal{Q}_L where V s.t. $V^{\dagger} m^{\dagger} mV$ is diagonal

• Zero for constant Yukawas

 $\langle h \rangle = 0$ $S_i^{CPV} \sim \operatorname{Im} \left[V^{\dagger} (m^{\dagger})'' mV \right]_{ii}$ \mathcal{Q}_L where V s.t. $V^{\dagger} m^{\dagger} mV$ is diagonal

- Zero for constant Yukawas
- Only active during the variation of Yukawas

 $\langle h \rangle = 0$ $S_i^{CPV} \sim \text{Im} \left[V^{\dagger} (m^{\dagger})'' mV \right]_{ii}$ $\mathcal{Q}L$ where V s.t. $V^{\dagger} m^{\dagger} mV$ is diagonal

- Zero for constant Yukawas
- Only active during the variation of Yukawas
- Connection to flavour model

 Higgs as pseudo-Nambu-Goldstone boson (pNGB) from symmetry breaking G/H.

- Higgs as pseudo-Nambu-Goldstone boson (pNGB) from symmetry breaking G/H.
- Fermion masses through partial compositeness

- Higgs as pseudo-Nambu-Goldstone boson (pNGB) from symmetry breaking G/H.
- Fermion masses through partial compositeness
- Composite sector needs to be almost conformal

- Higgs as pseudo-Nambu-Goldstone boson (pNGB) from symmetry breaking G/H.
- Fermion masses through partial compositeness
- Composite sector needs to be almost conformal
- Confinement phase transition naturally first-order

- Higgs as pseudo-Nambu-Goldstone boson (pNGB) from symmetry breaking G/H.
- Fermion masses through partial compositeness
- Composite sector needs to be almost conformal
- Confinement phase transition naturally first-order
- Joint confinement-electroweak phase transition

Yukawas vary during one step EWPT

Conformal symmetry breaking

The vev of the dilaton sets the scale of the strong sector:

Need small explicit breaking of conformal symmetry

$$V_{\chi} = c_{\chi} g_{\chi}^2 \chi^4$$

Conformal symmetry breaking

The vev of the dilaton sets the scale of the strong sector:

Need small explicit breaking of conformal symmetry

$$V_{\chi} = c_{\chi} g_{\chi}^2 \chi^4 - \epsilon[\chi] \chi^4 + \dots$$

Conformal symmetry breaking

The vev of the dilaton sets the scale of the strong sector:

Need small explicit breaking of conformal symmetry

$$V_{\chi} = c_{\chi} g_{\chi}^2 \chi^4 - \epsilon[\chi] \chi^4 + \dots$$

All scales in the strong sector (including f) are determined by χ

Explicit breaking of *G* through elementary-composite couplings:

Explicit breaking of *G* through elementary-composite couplings:

Explicit breaking of *G* through elementary-composite couplings:

$$V_h = g_\star^2 f^4 \frac{y^2}{(4\pi)^2} \sum_i c_i \left(\frac{y}{g_\star}\right)^{p_i} \mathcal{I}_i \left(\frac{h}{f}\right)$$

Explicit breaking of *G* through elementary-composite couplings:

Higgs potential generated at one loop with SM-fermions

Dimensional Analysis $V_h = g_\star^2 f^4 \frac{y^2}{(4\pi)^2} \sum_i c_i \left(\frac{y}{g_\star}\right)^{p_i} \mathcal{I}_i \left(\frac{h}{f}\right)$

Explicit breaking of *G* through elementary-composite couplings:

Explicit breaking of *G* through elementary-composite couplings:

Explicit breaking of *G* through elementary-composite couplings:

Tuning of the Higgs potential

$$V_h = g_\star^2 f^4 \frac{y^2}{(4\pi)^2} \sum_i c_i \left(\frac{y}{g_\star}\right)^{p_i} \mathcal{I}_i \left(\frac{h}{f}\right)$$

Chose characteristic $\mathcal{I}_i \to \sin^2$, \sin^4

$$V_h^0 = \alpha^0 \sin^2\left(\frac{h}{f}\right) + \beta^0 \sin^4\left(\frac{h}{f}\right)$$

Reproduce Higgs mass and vev $\Rightarrow \alpha^0 = -2\beta^0 \sin^2(v/f), \quad \beta^0 = \frac{1}{8}m_h^2 f^2 / \sin^2(v/f)$

$$|\alpha^0/\beta^0| = 2\sin^2(v/f) \ll 1$$

Full potential

V =

Full potential

$$\begin{aligned} & Full \text{ potential} \\ \theta &= \frac{h}{\chi} \end{aligned}$$

$$V = c_{\chi}g_{\star}^{2}\chi^{4} - \epsilon[\chi]\chi^{4} + c_{\chi y}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4} \\ &+ (\chi/f)^{4}(\alpha^{0}\sin^{2}\theta + \beta^{0}\sin^{4}\theta) + (V_{h}^{NDA}[y] - V_{h}^{NDA}[y_{0}]) \end{aligned}$$

$$V_h^{NDA}[y] = \left(c_\alpha \sum_{n_f} g_\star^2 \frac{N_c y^2[\chi]}{(4\pi)^2} \chi^4 \sin^2 \theta + c_\beta \sum_{n_f} g_\star^2 \frac{N_c y^2[\chi]}{(4\pi)^2} \chi^4 \left(\frac{y}{g_\star}\right)^{p_\beta} \sin^4 \theta \right)$$

$$\begin{aligned} & Full \text{ potential} \\ \theta = \frac{h}{\chi} \\ V = c_{\chi}g_{\star}^{2}\chi^{4} - \epsilon[\chi]\chi^{4} + c_{\chi y}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4} \\ + \chi/f)^{4}(\alpha^{0}\sin^{2}\theta + \beta^{0}\sin^{4}\theta) + (V_{h}^{NDA}[y] - V_{h}^{NDA}[y_{0}]) \\ V_{h}^{NDA}[y] = \left(c_{\alpha}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4}\sin^{2}\theta + c_{\beta}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4}\left(\frac{y}{g_{\star}}\right)^{p_{\beta}}\sin^{4}\theta\right) \end{aligned}$$

$$\begin{aligned} & Full \text{ potential} \\ \theta = \frac{h}{\chi} \\ V = c_{\chi}g_{\star}^{2}\chi^{4} - \epsilon[\chi]\chi^{4} + c_{\chi y}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4} \\ & + (\chi/f)^{4}(\alpha^{0}\sin^{2}\theta + \beta^{0}\sin^{4}\theta) + \underbrace{V_{h}^{NDA}[y] - V_{h}^{NDA}[y_{0}]) \\ V_{h}^{NDA}[y] = \left(c_{\alpha}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4}\sin^{2}\theta + c_{\beta}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4}\left(\frac{y}{g_{\star}}\right)^{p_{\beta}}\sin^{4}\theta\right) \end{aligned}$$

$$\begin{split} & Full \text{ potential} \\ \theta = \frac{h}{\chi} \\ V = c_{\chi}g_{\star}^{2}\chi^{4} - \epsilon[\chi]\chi^{4} + c_{\chi y}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4} \\ & + (\chi/f)^{4}(\alpha^{0}\sin^{2}\theta + \beta^{0}\sin^{4}\theta) + \underbrace{(V_{h}^{NDA}[y] - V_{h}^{NDA}[y_{0}])}_{V_{h}^{NDA}[y] = \left(c_{\alpha}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4}\sin^{2}\theta + c_{\beta}\sum_{n_{f}}g_{\star}^{2}\frac{N_{c}y^{2}[\chi]}{(4\pi)^{2}}\chi^{4}\left(\frac{y}{g_{\star}}\right)^{p_{\beta}}\sin^{4}\theta\right) \\ \text{Valley along the diagonal in } h - \chi \text{ potential} \end{split}$$

Temperature Corrections

- Hard to compute in the symmetric phase
- From dimensional analysis and large-N counting: $F_{CFT}[\chi = 0] \simeq -cN^2T^4$ where c depends on the number of d.o.f. per color in the strong sector
- For definiteness we use a 5-D estimate to fix c:

 Final baryon asymmetry depends on the direction of tunneling

- Final baryon asymmetry depends on the direction of tunneling χ

h

 Final baryon asymmetry depends on the direction of tunneling

- Final baryon asymmetry depends on the direction of tunneling
- Top-only case: non-vanishing CP violation requires varying complex phase in top Yukawa

- Final baryon asymmetry depends on the direction of tunneling
- Top-only case: non-vanishing CP violation requires varying complex phase in top Yukawa
- Multi-flavour case: CP violation depends on the flavour structure

Experimental tests and signatures

- Light dilaton
- Modified Higgs-quark coupling
- Neutron EDM through complex Higgs-top coupling
- Gravitational wave signal from strong first-order phase transition

Summary

- Composite Higgs is a prime example of varying Yukawas during the EW phase transition
- Partial compositeness explains the fermion mass hierarchy and also gives rise to a non vanishing Higgs potential
- Open parameter space for first-order phase transition and baryogenesis
- We provided strong motivation for EW baryogenesis in (even minimal) CH models

Dimensional Analysis and large N

Idea: restore dimensions of \hbar

Dimensional Analysis and large N

Idea: restore dimensions of \hbar

Large N expansion: for a meson like Higgs $g_{\star} \sim \frac{4\pi}{\sqrt{N}}$

Canonically normalised fields $\frac{1}{2}(\partial_{\mu}h)^{2}$

$$\begin{split} h &\to h + 2\pi f k \ (k \in \mathbb{Z}) \ \text{ for constant } f \\ h &\to h + 2\pi \chi k \ (k \in \mathbb{Z}) \ \text{for dynamical } \chi \\ \theta &= h/\chi : \quad \theta \to \theta + 2\pi k \quad \mathcal{L} = \frac{1}{2} \chi^2 (\partial_\mu \theta)^2 + \frac{1}{2} (\partial_\mu \chi)^2 \end{split}$$

We need canonically normalised fields for vacuum tunneling:

$$\chi_1 = \chi \sin \theta, \quad \chi_2 = \chi \cos \theta$$

Canonically normalised fields $\frac{1}{2}(\partial_{\mu}h)^2$ $h \to h + 2\pi f k \ (k \in \mathbb{Z})$ for constant f $h \rightarrow h + 2\pi \chi k \ (k \in \mathbb{Z})$ for dynamical χ $\theta = h/\chi: \quad \theta \to \theta + 2\pi k \quad \mathcal{L} = \frac{1}{2}\chi^2(\partial_\mu\theta)^2 + \frac{1}{2}(\partial_\mu\chi)^2$

We need canonically normalised fields for vacuum tunneling:

$$\chi_1 = \chi \sin \theta, \quad \chi_2 = \chi \cos \theta$$

Canonically normalised fields $\frac{1}{2}(\partial_{\mu}h)^2$ $h \to h + 2\pi f k \ (k \in \mathbb{Z})$ for constant f $h \to h + 2\pi \chi k \ (k \in \mathbb{Z})$ for dynamical χ $\theta = h/\chi: \quad \theta \to \theta + 2\pi k \quad \mathcal{L} = \frac{1}{2}\chi^2(\partial_\mu\theta)^2 + \frac{1}{2}(\partial_\mu\chi)^2$

We need canonically normalised fields for vacuum tunneling:

$$\chi_1 = \chi \sin \theta, \quad \chi_2 = \chi \cos \theta$$
Canonically normalised fields

$$\frac{1}{2}(\partial_{\mu}h)^{2}$$

$$h \to h + 2\pi f k \ (k \in \mathbb{Z}) \ \text{for constant } f$$

$$h \to h + 2\pi \chi k \ (k \in \mathbb{Z}) \ \text{for dynamical } \chi$$

$$\theta = h/\chi: \quad \theta \to \theta + 2\pi k \quad \mathcal{L} = \frac{1}{2}\chi^{2}(\partial_{\mu}\theta)^{2} + \frac{1}{2}(\partial_{\mu}\chi)^{2} \quad \checkmark$$

We need canonically normalised fields for vacuum tunneling:

$$\chi_1 = \chi \sin \theta, \quad \chi_2 = \chi \cos \theta$$

Temperature Corrections

- Use standard one loop result to interpolate between the symmetric phase and the brocken phase.
- We use standard one loop result for SM fermions

$$\Delta V_{1-loop}^{T} = \sum_{\text{bosons}} \frac{nT^{4}}{2\pi^{2}} J_{b} \left[\frac{m^{2}}{T^{2}} \right] - \sum_{\text{fermions}} \frac{nT^{4}}{2\pi^{2}} J_{f} \left[\frac{m^{2}}{T^{2}} \right]$$
$$J_{b}[x] = \int_{0}^{\infty} dk \ k^{2} \log \left[1 - e^{-\sqrt{k^{2} + x}} \right] \quad \text{and} \quad J_{f}[x] = \int_{0}^{\infty} dk \ k^{2} \log \left[1 + e^{-\sqrt{k^{2} + x}} \right]$$
$$\sum_{\text{CFT bosons}} n + \sum_{\text{CFT fermions}} n = \frac{45N^{2}}{8\pi^{2}}$$

Temperature Evolution

Full potential

$$\theta = \frac{h}{\chi}$$

CP-Violation

Generically $y_i \bar{q}_i \mathcal{O}_i \to y_{ij} \bar{q}_i \mathcal{O}_j$ $\Rightarrow m_{ij} \sim (\mathbb{I}_L)_{ik} (y_L)_{kk} (g_{\star}^{-1})_{kl} (y_R)_{ll}^{\dagger} (\mathbb{I}_R)_{lj} h$

Define

 $d_{ij} = (y_{Li}y_{Rj}^{\star}h)''/(y_{Li}y_{Rj}^{\star}h)$

[L]	y_L	g_{\star}^{-1}	y_R	\mathbb{I}_R	condition on d_{ij} for $S_{ m CPV}=0$
d	2	d	2	d	always
	1		1		always
d	2	ø	2	d	$d_{11} + d_{22} = d_{12} + d_{21}$
	1		2		always
	2		1		always
	1		1		always
¢	2	d	2	d	always
	1		1		always
Å	2	Å	2	d	$d_{11}=d_{12},d_{22}=d_{21}$
	1		2		always
	2		1		$d_{11} = d_{21}$
	1		1		always
Å	2	d	2	đ	$d_{11} = d_{12} = d_{21} = d_{22}$
	1		1		always
¢	2	ø	2	ø	$d_{11} = d_{12} = d_{21} = d_{22}$
	2		1		$d_{11} = d_{21}$
	1		2		$d_{11} = d_{12}$
	1		1		always

Baryon asymmetry: multi-flavour case with U(1) flavour symmetries

Baryon asymmetry: top-only case

- Detect Dilaton
- Fit parameters of EFT to data
- E.g.: Dilaton quark coupling

- Detect Dilaton
- Fit parameters of EFT to data
- E.g.: Dilaton quark coupling

- Detect Dilaton
- Fit parameters of EFT to data
- E.g.: Higgs quark coupling

Beta function of Yukawa coupling of quark q

Higgs-Dilaton mass mixing. Depend on parameters of potential.

- Detect Dilaton
- Fit parameters of EFT to data
- E.g.: Higgs quark coupling

CLIC sensitivity on $\operatorname{Re} \left[\delta \lambda_t \right] \sim 4\% \text{ at } 1\sigma$ Abramowicz et al. '13

$$\begin{split} \mathrm{Im} \left[\delta \lambda_t \right] \lesssim 0.018 @ 90\% \mathrm{CL} \\ & \text{Cirigliano, Dekens,} \\ & \text{de Vries, Mereghetti '16} \end{split}$$

LISA: $\alpha \gtrsim 0.1$ & $1 \lesssim \beta/H \lesssim 10^4$

Grojean, Servant '06 Caprini et al. '15

Sensitivity to f

$$f = 0.8 \,\mathrm{TeV}$$
 vs. $f = 2 \,\mathrm{TeV}$

Two field tunneling One field V

 $S_E \sim 140$

Two field tunneling One field

Two fields

 $S_E \sim 140$

$$\frac{\mathrm{d}^2 \vec{\phi}}{\mathrm{d} r^2} + \frac{\alpha}{r} \frac{\mathrm{d} \vec{\phi}}{\mathrm{d} r} = \nabla V(\vec{\phi})$$

Two fields

 $S_E \sim 140$ $\frac{\mathrm{d}^2 \vec{\phi}}{\mathrm{d}r^2} + \frac{\alpha}{r} \frac{\mathrm{d} \vec{\phi}}{\mathrm{d}r} = \nabla V(\vec{\phi})$ ϕ_2

Two fields

$$\begin{split} S_E &\sim 140 \\ \frac{\mathrm{d}^2 \vec{\phi}}{\mathrm{d}r^2} + \frac{\alpha}{r} \frac{\mathrm{d} \vec{\phi}}{\mathrm{d}r} = \nabla V(\vec{\phi}) \\ \mathrm{Guess} \quad \vec{\phi}_g(x) \end{split}$$

Two fields

$$\begin{split} S_E &\sim 140 \\ \frac{\mathrm{d}^2 \vec{\phi}}{\mathrm{d}r^2} + \frac{\alpha}{r} \frac{\mathrm{d} \vec{\phi}}{\mathrm{d}r} = \nabla V(\vec{\phi}) \\ \mathrm{Guess} \quad \vec{\phi}_g(x) \end{split}$$

Two fields

Two fields

Two fields

Two fields

Two fields

Two fields

EW Baryogenesis

Cohen, Kaplan, Nelson '91

 $\langle H \rangle \neq 0$ $\langle H \rangle = 0$ Sphaleron Sphaleron inactive active BBaryon number Chiral asymmetry frozen converted to Baryon asymmetry **CP-violation** at phase interface 32

- 1. Sakharov condition (B-violation)
- 2. Sakharov condition (CP-violation)

3. Sakharov condition (out of equilibrium)

- 1. Sakharov condition (B-violation)
- 2. Sakharov condition (CP-violation)
- 3. Sakharov condition (out of equilibrium)

1. Sakharov condition (B-violation) $\Gamma_{ws} = 10^{-6} T \exp(-a\phi(z)/T)$

 $\frac{h}{T} \stackrel{\Downarrow}{\geq} 1$

2. Sakharov condition (CP-violation)

3. Sakharov condition (out of equilibrium)

3. Sakharov condition (out of equilibrium)

3. Sakharov condition (out of equilibrium)

Models with diffusion 2 Higgs doublet Cohen, Kaplan, Nelson '94 violating source, MSSM Cline, Joyce, Kainulainen '97 inject to Boltzmann equation

Models with diffusion 2 Higgs doublet Cohen, Kaplan, Nelson '94 MSSM Cline, Joyce, Kainulainen '97 inject to Boltzmann equation CP-violation and diffusion equation Prokopec, Schmidt

from first principles (Kadanoff-Baym)

Prokopec, Schmidt, Weinstock '03

Source for μ in SM $S \sim \Im \left| V^{\dagger} m^{\dagger''} m V \right|$ $m = y(z) \cdot \frac{\phi(z)}{\sqrt{2}}$ For constant y: $S \sim \underbrace{\Im \left[V^{\dagger} y^{\dagger} y V \right] \phi'' \phi}_{\bullet}$ EW scale flavour physics Composite Higgs Froggatt-Nielsen Randall-Sundrum \Rightarrow z dependent Yukawas \checkmark

Special case: 1 flavour $m = |m|e^{i\theta}$ $S \propto \operatorname{Im} \left| V^{\dagger} m^{\dagger''} m V \right| = \left(|m|^2 \theta' \right)'$ Agrees with semiclassical treatment θ has to be space dependent!

This is not the case for two mixing flavours.

System and Kernel

A(z) v'(z) + B(z) v(z) = S(z)

Unknowns

 $(\mu_{t_{R/L}}, \mu_{b_{R/L}}, \mu_{s_{R/L}}, \mu_{c_{R/L}}, \mu_h$ $u_{t_{R/L}}, u_{b_{R/L}}, u_{s_{R/L}}, u_{c_{R/L}}, u_h)$

System and Kernel

A(z) v'(z) + B(z) v(z) = S(z)

Unknowns *

 $(\mu_{t_{R/L}}, \mu_{b_{R/L}}, \mu_{s_{R/L}}, \mu_{c_{R/L}}, \mu_{h})$ $u_{t_{R/L}}, u_{b_{R/L}}, u_{s_{R/L}}, u_{c_{R/L}}, u_{h})$

 $\mathbf{\downarrow} \quad \mu(z) = \int_{-\infty}^{+\infty} \mathrm{d}z_0 \, G(z, z_0) \, S(z_0)$

System and Kernel

Unknowns

 $(\mu_{t_{R/L}}, \mu_{b_{R/L}}, \mu_{s_{R/L}}, \mu_{c_{R/L}}, \mu_{h})$ $u_{t_{R/L}}, u_{b_{R/L}}, u_{s_{R/L}}, u_{c_{R/L}}, u_{h})$

 $r + \infty$

$$\mu(z) = \int_{-\infty}^{+\infty} \mathrm{d}z_0 \, G(z, z_0) \, S(z_0)$$

$$\eta_B = \int_{-\infty} dz \, \# \Gamma_{ws}(z) \, e^{-\#z} \, \mu_L(z)$$

Varying Yukawas across the wall

Effective description following from Flavon-Higgs coupling

Yukawas

$$Y_{tc}(z,n) = \begin{pmatrix} e^{i}y(1,0.008,\phi(z),n) & y(1,0.04,\phi(z),n) \\ y(1,0.2,\phi(z),n) & y(1,1,\phi(z),n) \end{pmatrix}$$

Yukawas

$$Y_{tc}(z,n) = \begin{pmatrix} e^{i}y(1,0.008,\phi(z),n) & y(1,0.04,\phi(z),n) \\ y(1,0.2,\phi(z),n) & y(1,1,\phi(z),n) \end{pmatrix}$$

Summary

- Framework for CP-violation and diffusion for z-dependent Yukawas.
- Fully consistent and general formalism (diffusion and CPviolation from first principle).
- Application possible to low-scale flavour physics (Froggatt-Nielsen, Randall-Sundrum, Composite Higgs etc.)
 Baldes, Konstandin, Servant '16
 Von Harling, Servant '16
 1612.02447
 Von Harling, Servant In preparation

Froggat-Nielsen

 χ, σ

Yukawa type interactions after SSB $\mathcal{L} \supset \tilde{y}_{ij} \left(\frac{\langle \chi \rangle}{\Lambda_{\chi}}\right)^{\tilde{n}_{ij}} \bar{Q}_i \tilde{\phi} U_j + y_{ij} \left(\frac{\langle \chi \rangle}{\Lambda_{\chi}}\right)^{n_{ij}} \bar{Q}_i \phi D_j$ $+ \tilde{Y}_{ij} \left(\frac{\langle \sigma \rangle}{\Lambda_{\sigma}}\right)^{\tilde{n}_{ij}} \bar{Q}_i \tilde{\phi} U_j + Y_{ij} \left(\frac{\langle \sigma \rangle}{\Lambda_{\sigma}}\right)^{n_{ij}} \bar{Q}_i \phi D_j$

 $U(1)_{FN}$ with two FN fields

VEVs during EWSB $\phi: 0 \rightarrow v_{\phi} \quad \sigma: \Lambda_{\sigma}/5 \rightarrow \Lambda_{\sigma}/5 \quad \chi: \Lambda_{\chi} \rightarrow 0$ $\chi - \phi$ -Potential

Charge assignment $Q_{FN}(\sigma) = Q_{FN}(\chi) = -1$ $\bar{Q}_3(0)$ $\bar{Q}_2(+2)$ $\bar{Q}_1(+3)$ $U_3(0)$ $U_2(+1)$ $U_1(+4)$ $D_3(+2)$ $D_2(+2)$ $D_1(+3)$ 1000

Randall-Sundrum

Deriving the equations

- Hermitian part of the Kadanoff-Baym equations
- Expand to second order in gradients (smooth background) and at tree level
- Neglect off-diagonals (fast flavour oscillations)
- Fluid type Ansatz for particle densities:

$$f_i = \frac{1}{e^{\beta(\omega_i + v_w k_z - \mu_i)} \pm 1} + \delta f_i$$

Take different momenta and average over energy and momentum

Kinetic equations
$$\left(k_z\partial_z - \frac{1}{2}\left(\left[V^{\dagger}\left(m^{\dagger}m\right)'V\right]\right)_{ii}\partial_{k_z}\right)f_{L,i} \approx \mathbf{C} + \mathcal{S}$$
 $\left(k_z\partial_z - \frac{1}{2}\left(\left[V^{\dagger}\left(m^{\dagger}m\right)'V\right]\right)_{ii}\partial_{k_z}\right)f_{R,i} \approx \mathbf{C} - \mathcal{S}$ Collision termCollision term ψ Source depends on m ψ $\lim_{k \neq 0} to p$ $\mathcal{S} \equiv \frac{\operatorname{sign}[k_z]}{2\tilde{k}}\operatorname{Im}\left[V^{\dagger}m^{\dagger''}mV\right]_{ii}\partial_{k_z}f_{L/R,i}$ $(V \operatorname{are the Eigenvectors of }m^{\dagger}m)$

Network equations

 1_{1}

Fluide type Ansatz:

$$f_i = \frac{1}{e^{\beta(\omega_i + v_w k_z - \mu_i)} \pm 1} + \delta f_i \qquad u \equiv \left\langle \frac{\kappa_z}{\omega_0} \delta f \right\rangle$$

CP-odd Energy-Momentum average, linear in: μ_i, u_i and v_w :

$$v_w K_1 \mu' + v_w (m^2)' K_2 \mu + u' - \langle \mathbf{C} \rangle = 0$$

-K_4 \mu' + v_w \tilde{K}_5 u' + v_w (m^2)' \tilde{K}_6 u - \left\langle \frac{k_z}{\omega_{0i}} \mathbf{C} \right\rangle = \pm v_w K_8 \operatorname{Im} \left[V^{\dagger} m^{\dagger''} m V \right]
Interactions
Source

Network equations

 1_{1}

Fluide type Ansatz:

$$f_i = \frac{1}{e^{\beta(\omega_i + v_w k_z - \mu_i)} \pm 1} + \delta f_i \qquad u \equiv \left\langle \frac{\kappa_z}{\omega_0} \delta f \right\rangle$$

CP-odd Energy-Momentum average, linear in: μ_i, u_i and v_w :

$$v_{w} K_{1} \mu' + v_{w} (m^{2})' K_{2} \mu + u' - \langle \mathbf{C} \rangle = 0$$

-K_{4} \mu' + v_{w} \tilde{K}_{5} u' + v_{w} (m^{2})' \tilde{K}_{6} u - \left\langle \frac{k_{z}}{\omega_{0i}} \mathbf{C} \right\rangle = \pm v_{w} K_{8} \operatorname{Im} \left[V^{\dagger} m^{\dagger''} m V \right]
Interactions
Source

$$v_w K_1 \mu' + v_w (m^2)' K_2 \mu + u' - \Gamma^{\text{inel}} \sum_i \mu_i = 0$$

 $-K_4 \,\mu' + v_w \,\tilde{K}_5 \,u' + v_w (m^2)' \,\tilde{K}_6 \,u + \Gamma^{\text{tot}} u = \pm v_w K_8 \,\text{Im} \left[V^{\dagger} m^{\dagger''} m V \right]$

$$v_w K_1 \mu' + v_w (m^2)' K_2 \mu + u' - \Gamma^{\text{inel}} \sum_i \mu_i = 0$$

-K_4 \mu' + v_w \tilde{K}_5 u' + v_w (m^2)' \tilde{K}_6 u + \Gamma^{\text{tot}} u = \pm v_w K_8 \text{Im} \left[V^{\dagger} m^{\dagger''} m V \right]
e.g. Fromme, Huber '06

- hep-ph/0604159 Interactions:
- Couple different particle species together

$$v_{w} K_{1} \mu' + v_{w} (m^{2})' K_{2} \mu + u' - \Gamma^{\text{inel}} \sum_{i} \mu_{i} = 0$$

-K₄ \mu' + v_{w} \tilde{K}_{5} u' + v_{w} (m^{2})' \tilde{K}_{6} u + \Gamma^{\text{tot}} u = \pm v_{w} K_{8} \text{Im} \left[V^{\dagger} m^{\dagger''} m V \right]
e.g. Fromme, Huber '06

hep-ph/0604159 Interactions:

Couple different particle species together

- Yukawa interactions e.g. $t_L \leftrightarrow t_R + h$ $\Gamma_{y,q} = 4.2 \times 10^{-3} y_q^2 T$
- Helicity flip e.g. $t_L \leftrightarrow t_R$ $\Gamma_{m,q} = \frac{m_q^2}{63T}$

49

- W-scattering e.g. $t_L \leftrightarrow b_L$
- Higgs number violation $h \leftrightarrow 0$
- Strong sphaleron $\ all \ L \leftrightarrow all \ R$

 $\Gamma_W = \frac{T}{60}$

 $\Gamma_h = \frac{m_W^2}{50T}$

 $\Gamma_{ss} = 4.9 \times 10^{-4} T$

Collision term

$$\langle \mathbf{C} \rangle = \Gamma^{\text{inel}} \sum_{i} \mu_{i}, \qquad \left\langle \frac{k_{z}}{\omega_{0i}} \mathbf{C} \right\rangle = -\Gamma^{\text{tot}} u$$

- Yukawa interactions e.g. $t_L \leftrightarrow t_R + h$ $\Gamma_{y,q} = 4.2 \times 10^{-3} y_q^2 T$
- Helicity flip e.g. $t_L \leftrightarrow t_R$ $\Gamma_{m,q} = \frac{m_q^2}{63T}$
 - W-scattering e.g. $t_L \leftrightarrow b_L$ $\Gamma_W = \frac{T}{60}$
- Higgs number violation $h \leftrightarrow 0$ $\Gamma_h = \frac{m_W^2}{50T}$

 $\Gamma_{ss} = 4.9 \times 10^{-4} T$

- Strong sphaleron $\ all \ L \leftrightarrow all \ R$
$$\phi(z) = \frac{1}{2} \left(1 - \operatorname{Tanh} \frac{z}{L_w} \right)$$

Overwiev

- Introduction to Electroweak Baryogenesis
- Model independent approach to Baryogenesis from varying Yukawas
 - CP-violation from varying Yukawas
 - Computation of the Baryon asymmetry
- Introducing Composite Higgs as prime example of this scenario
 - The Higgs-Dilaton potential
 - Higgs shift symmetry breaking
 - Conformal symmetry breaking
 - Two field tunneling
 - Results

What is new?

- Minimal coset SO(5)/SO(4) insures custodial symmetry.
- Non-minimal cases typically contain additional singlets \Rightarrow first order phase transition is easy to obtain Espinosa, Gripaios, Konstandin, Riva '11
- We study the dynamics of the conformal symmetry breaking at the same time as the EW symmetry breaking