Relevant Standard Model

Hyung Do Kim (Seoul National University)

Confronting Naturalness : From LHC to future colliders 2018. 4. 25-27 DESY, Germany

Beyond the Standard Model

Why not?

naturalness

light particle is natural if symmetry is enhanced when the particle becomes massless

Pion, photon, neutrino, top quark, electron, ...

dark matter

5 or 6 times of ordinary matter density is not made of SM fermions (protons, neutrons, electrons, neutrinos)

new particle or new paradigm?

unification of gauge couplings

charge quantization is one of the puzzle in the SM $Q_d = \frac{1}{3}Q_e \qquad \qquad 2Q_u + Q_d + Q_e = 0$

anomaly cancellation could have worked differently

furthermore, accidental observations

- 0. two lines meet at one point (or ||)
- 1. three lines meet at one point
- 2. below Planck scale & avoid proton decay

Higgsless model technicolor flat/warped EXD little Higgs composite Higgs

dark matter supersymmetry unification

before/after Higgs discovery

Higgsless model

technicolor

flat/warped EXD

little Higgs

composite Higgs

dark matter supersymmetry unification

less

By A Pomarol

$$V(H) = -\frac{m_h^2}{2}|H|^2 + \frac{\lambda}{4}|H|^4$$

Two mass terms used in the literature

 $V(H) = -\frac{m_h^2}{2}|H|^2 + \frac{\lambda}{4}|H|^4$ $4 \\ m_h^2 = \lambda v^2$ Higgs mass prediction is obtained from it as v=174 GeV is fixed from W,Z mass

This is the source of fine tuning to keep the weak scale

Supersymmetry with no fine tuning predicts

$$v \sim \frac{m_{SUSY}}{4\pi\lambda^{\frac{1}{2}}}$$

fine tuning $\sim \frac{m_h^2}{m_{SUSY}^2} \frac{5}{L}$
 $m_{SUSY} = 1 \text{ TeV}$
 $10^{-2} \sim 10^{-4}$
 $m_{SUSY} = 10 \text{ TeV}$

Composite Higgs with no fine tuning predicts

$$v \sim \frac{M}{4\pi\lambda^{\frac{1}{2}}}$$
 fine tuning $\sim \frac{m_h^2}{M^2} \frac{5}{L}$ $M \ge 1 \text{ TeV}$ fine tuning : a few %

Supersymmetry : tree+1loop tree+1loop

$$V(H) = -\frac{m_h^2}{2}|H|^2 + \frac{\lambda}{4}|H|^4$$

$$\uparrow$$
Composite Higgs : 1loop 1loop

MSSM : stop at 5~10 TeV for H(125) $m_h \sim m_{\rm SUSY}$ is violated

Composite Higgs : v ~ f relation is violated

No motivated models are in good shape now.

Supersymmetric₁₈little twin composite Higgs?

Twin Higgs : Neutral Naturalness (assuming two copies of the SM) $SU(4) \rightarrow SU(2) \times SU(2) \times Z_2$

top loop cancelled by (our) colorless one

similar to tan beta=1 of THDM large invisible decay problem in cosmology, ...

 $V = yH_A q_A t_A + yH_B q_B t_B - m^2 (|H_A|^2 + |H_B|^2) + \lambda (|H_A|^2 + |H_B|^2)^2$ $V_{1L} = \frac{3y^2}{8\pi^2} \Lambda^2 (|H_A|^2 + |H_B|^2)$ $H_A = \frac{1}{\sqrt{2}} (h + H) \qquad H_B = \frac{1}{\sqrt{2}} (-h + H)$

Twin Higgs : Neutral Naturalness (assuming two copies of the SM) $SU(4) \rightarrow SU(2) \times SU(2) \times Z_2$

top loop cancelled by (our) colorless one

similar to tan beta=1 of THDM large invisible decay problem in cosmology, ...

$$\begin{split} V &= y H_A q_A t_A + y H_B q_B t_B - m^2 (|H_A|^2 + |H_B|^2) + \lambda (|H_A|^2 + |H_B|^2)^2 \\ V_{1L} &= \frac{3y^2}{8\pi^2} \Lambda^2 (|H_A|^2 + |H_B|^2) + M_B^2 |H_A|^2 \\ &= m_A^2 |H_A|^2 \\ &= m_A$$

Higgs as pNGB

works in **Nnaturalness**

works in relevant Standard Model

It is important to fill up the loophole in all possible explanation of the hierarchy

Nnaturalness

by S Dimopoulos

Nnaturalness

Arkani-Hamed Cohen D'agnolo

Hook HDK Pinner, PRL (2016)

rondom dort to 1m*1

1m

random dart to 1m*1m in the disk of the solar system

scenario | $N = 10^{16}$ $\Lambda_* = \Lambda_H = 10^{10} \text{ GeV}$ scenario II $N = 10^4$ $\Lambda_* = 10^{16} \text{ GeV}$ $\Lambda_H = 10 \text{ TeV}$ by N Arkani-Hamed

$$(m_H^2)_i = -\frac{\Lambda_H^2}{N} (2i+r), \qquad -\frac{N}{2} \le i \le \frac{N}{2}$$

different phase of deconstruction

phase A : extra dimension

phase B : Nnaturalness

Cosmological solution to the naturalness

Relaxion

Nnaturalness

It might explain no new physics at the LHC Cosmological observables might be interesting

Why is it working?

Reheaton is pNGB (not Higgs itself)

The presence of light scalar can be explained by pNGB idea

and

extra assumption of decay via Higgs can explain why it decays predominantly to the lightest Higgs sector

Talk at LHCP2017 , May 15-20

1709.00766

[‡]One possible way out is to make the SM Yukawa and gauge couplings to be relevant.

3

 $m_h^2(\mu) \phi^* \phi \qquad y \phi \psi \psi + M \psi \psi$

Add heavy Dirac Perision of masenty in Swith coupling y y problem: is Nature nationally as an example 11

e divergence in a suita<u>ble renormalization scheme</u> – anyway it drops... fferences between different2scales. The logarithm, on the other hand, e beta function of the running Higgs mass as

$$\beta_{m_h^2} = \frac{d \, m_h^2(\bar{\mu})}{d \log \bar{\mu}} = \frac{y_{\delta m}^2}{(4\pi)^2} (\frac{m_h^2}{m_h^2} - 6M^2) \frac{m_h^2}{100} \cdot (2.21)$$

$$m_h^2(\Lambda_{\rm SM}) \simeq m_h^2(\Lambda_{\rm NP}) - \# \Lambda_{\rm NP_{32}}^2 \log \frac{\Lambda_{\rm NP}}{\Lambda_{\rm SM}}.$$

 $m_h(\mu) \psi \psi$

Below the sparticle mass scales, the correction is negligible

$$\beta_{m_h^2} = \frac{dm_h^2}{d\log\bar{\mu}} = \frac{3m_h^2}{8\pi^2} \left(2\lambda + y_t^2 - \frac{3g^2}{4} - \frac{g'^2}{4}\right)$$

Fine tuning is determined at the sparticle mass scales, $m_h^2(m_{\rm SUSY}) = m_h^2(\Lambda) + \delta m_h^2(\Lambda \to m_{\rm SUSY})$ Focus on the couplings $\longrightarrow \frac{6y_t^2}{8\pi^2} m_{\rm SUSY}^2 \log(\frac{\Lambda}{m_{\rm SUSY}})$ $= O(m_{\rm SUSY}^2)$ a_{33} bounds from direct search

$$\delta m_h^2(m_{\rm SUSY}) = c y_{t*}^2 m_{\rm SUSY}^2$$

 $y_{t*} = y_t(\mu = m_{\rm SUSY})$

If y_t is drastically different at m_{SUSY}, m_t , EWSB can be natural with heavy stops.

$$\delta m_h^2(m_{\rm SUSY}) = c y_{t*}^2 m_{\rm SUSY}^2$$

 $y_{t*} = y_t(\mu = m_{\rm SUSY})$

If y_t is drastically different at m_{SUSY}, m_t , EWSB can be natural with heavy stops.

Higgs as pNGB does not work well since $y_t \sim \mathcal{O}(1)$

For the relevant operators, it is more important (relevant) at IR

$$g_{\rm eff}(\mu) = c \frac{\Lambda}{\mu}$$
 $c = \epsilon \ll 1$

Suppose the dimension of spacetime changes from D to 4 at the scale M and below.

$$y_t = \epsilon \frac{m_{\rm SUSY}}{M}$$
 can be order one if $\epsilon \sim \frac{M}{m_{\rm SUSY}} \ll 1$

This is very compatible with pNGB idea of having suppressed coupling at Λ $y_{t(eff)} = \epsilon \ll 1$

In 4 spacetime dimensions

$$[HQt^{c}] = 3 \qquad [y_{t}] = 1$$
$$[H^{*}HA_{\mu}A^{\mu}] = 2 \qquad [g] = 1$$
$$[(H^{*}H)]^{2}] = 2 \qquad [\lambda] = 2$$

Possible strongly interacting theory above M $[H] = 1 \qquad [y_t] = 1, [g] = 1, [\lambda] = 0$ $[Qt^c] = 2 \qquad \frac{d\lambda}{d\log\mu} = c\lambda^2$ $[A_\mu] = 0 \qquad \text{multiplicative running}$

make it even smaller

In 4 spacetime dimensions

$$[HQt^{c}] = 3 \qquad [y_{t}] = 1$$
$$[H^{*}HA_{\mu}A^{\mu}] = 2 \qquad [g] = 1$$
$$[(H^{*}H)]^{2}] = 2 \qquad [\lambda] = 2$$

Possible strongly interacting theory above M $[H] = 1 \qquad [y_t] = 1 - r_t$ $[Qt^c] = 2 + r_t \qquad [g] = 1 - r_A$ $[A_\mu] = r_A \qquad \frac{d\lambda}{d\log\mu} = c\lambda^2$

multiplicative running

In 4 spacetime dimensions

$$[HQt^{c}] = 3 \qquad [y_{t}] = 1$$
$$[H^{*}HA_{\mu}A^{\mu}] = 2 \qquad [g] = 1$$
$$[(H^{*}H)]^{2}] = 2 \qquad [\lambda] = 2$$

Classical scaling dimension in d spacetime dimensions $[H] = [A_{\mu}] = \frac{D-2}{2} \qquad [y_t] = 2 - \frac{D}{2}$ $[Qt^c] = D - 1 \qquad [g] = 2 - \frac{D}{2}$ $[\lambda] = 4 - D$

vanishing dimension : Lorentz violation(?)

Phenomenology

Couplings are suppressed at and above M Cross sections are suppressed accordningly

$$\sigma(t\bar{t}) \propto \frac{M^2}{E^4} \quad \text{for} \quad E \ge M$$
$$M \gg 1 \text{ TeV from the LHC}$$

Summary

Light Higgs might be due to smaller couplings at high energy

It is consistent with Higgs being a pseudo-Nambu-Goldstone boson at high energy

To realize the idea in the SM, we can take several possibilities (strongly interacting QFT above M, spacetime dimension 4 to 2 above M)