

DHI Prototype Test Results and Cluster Format Data Size

Belle II PXD Workshop 22–24 January 2018

TUM group Andrey Rabusov

- 12 new (v3.1) DOCKBOXes are in TUM
- C150 is shorten
- R22 is detached
- After changes all links are stable (GCK 76 MHz)
- All DOCXBOXes are tested
- Last step: attach transmitters to DOCKBOXes (TBD)

DHI prototype

- DHI prototype:
 - Galvanic isolation
 - GCK and TRG amplification
- Final variant of DHI purpose:
 - ASICs control
 - Simultaneous operation of 5 modules
 - Link: https://confluence.desy.de/pages/ viewpage.action?pageId=43903275

TUM setup

TUM setup

DHI prototype

24 January 2018 Belle II PXD Workshop

24 January 2018 Belle II PXD Workshop

Clustering algorithm

- Remapping
- Apply algorithm to the whole DEPFET matrix (768x250)
- If there are hits on the matrix DHE sends 4 frames per each event:
 - DHE start of event (16 Bytes)
 - Data frame (Not fixed, minimum 12 Bytes)
 - Common mode frame (200 Bytes)
 - DHE end of event (16 Bytes)
- If there are no hits, DHE sends 3 frames:
 - DHE start of event (16 Bytes)
 - GHOST frame (8 Bytes)
 - DHE end of event (16 Bytes)

Remapping (Florian Lütticke talk on Seeon 2016)

- Partial mapping of DHP data in DHE/DHC
 - Do a simple "premapping" on the DHE, so that data is mapped but there are still regions with unconnected channels
 - For DHE: First step to cluster format

if dhp%2==0:

c[row, LUP(dhp) + col_in_dhp ^
0x3c]=b[row, 64*dhp + col_in_dhp]
else:

c[row ^ 0x2, LUP(dhp) +
(((col_in_dhp ^ 0x3c) + ((row & 2)
>>1)%64))] = b[row, 64*dhp +
col_in_dhp]

60

Column on Matrix

80

100

LUP = [0,62, 125, 187]

24 January 2018 Belle II PXD Workshop

a.rabusov@tum.de

20

n

40

luetticke@physik.uni-bonn.de

120

Cluster data format

Ε	0001		n	DHI ID	Reserved	Trigger Nr. 15:0				
0	S	S dE/dX Col[7:6] Row address [9:0]				1	Ι	Column Address	ADC Value	
CRC32										

- 32-bit DHE header
- First hit of a cluster:
 - 16 bit word with 10 bit row address and upper 2 bits of absolute column address
 - Pixel word with absolute column address (lower 6 bits)
- Next hits of the cluster
 - Only pixel word with relative column address [5:0] (SIGNED INTEGER!, {two's complement})
 - If 6-bits for column is not enough: as the first hit with zero StartOfCluster flag
- Alignment 16-bit word if necessary
- 32-bit CRC
- Common mode frame: always 200 bytes.

24 January 2018 Belle II PXD Workshop

- *Pro* clustering format:
 - No DHPT headers
 - Only one data frame instead of four
 - Absolute row address
 - Takes into account real geometry of cluster
- Contra clustering format:
 - Common mode frame
- Take into account that 3% occupancy level corresponds to ~ 10 kB of DHE event size.

Technische Universit

Beam Test 2017 data

- Run #244:
 - Energy of beam: 4 GeV
 - The beam is perpendicular to plane of sensors
 - Magnetic field: 1.0 T

Technische Universitä

Size difference

- Clustering engine DHE event size is bigger by ~200 bytes in average
- This difference comes from common mode frame

Conclusion

- DOCKBOX:
 - 12 Dbs are tested in TUM, next step: transmitters attachment
- DHI:
 - 6 DHIs were produced and passed tests
 - DHPT-DHE links are up with 76 MHz GCK
 - 4 DHIs are in KEK, one is in TUM and one took Botho
- Clustering engine format:
 - Data rate is bigger by ~200 bytes per event bigger
 - This could be acceptable in case of 3% occupancy level (event size is ~ 10 kB, 200 B is increase by 2% ,data rate from one module 0.48 Gb/s).

Thank you!

Backup Zero suppressed format

E	0101		n	DHE ID				Reserved		Trigger Nr. 15:0			
	101		Res	С	0	Ρ		DHE ID DHP# DHP Frame ID				ame ID	
0	RowRedd #essr[8:51] (Со	Common Mode		1	Row(0) Column(5:0)	ADC Value
CRC32													

- 32-bit DHE header
- 32-bit DHP header
- First hit of a double-row:
 - Double-row 16-bit word, only 9 upper bits of row are there
 - Pixel word with absolute column address in DHPT
- Alignment 16-bit word if necessary
- 32-bit CRC
- Common mode frame: in double-row 16-bit word