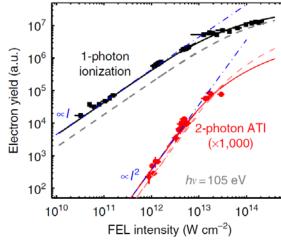
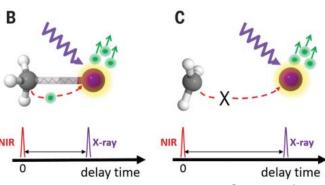
Atomic-like Quantum System End-Station

Dr Alberto De Fanis Scientific Instrument SQS Instrument Scientist

SQS Early User Workshop Schenefeld, 12th February 2018


SQS: Small Quantum Systems

SASE3 – SQS beam parameters on the sample, day 1				
hν	1000 eV			
$\Delta h \nu$	0.5% (but monochr. is also available)			
Pulse duration	50 - 100 fs			
Pulse energy	≤ 3 mJ			
Beam size	~ 1.5 – 2.5 μm			
Rep. rate	1 MHz			


300 μs, 1 MHz, 300 pulses/train 100ms Time X-ray photons NIR X-ray 0 delay time

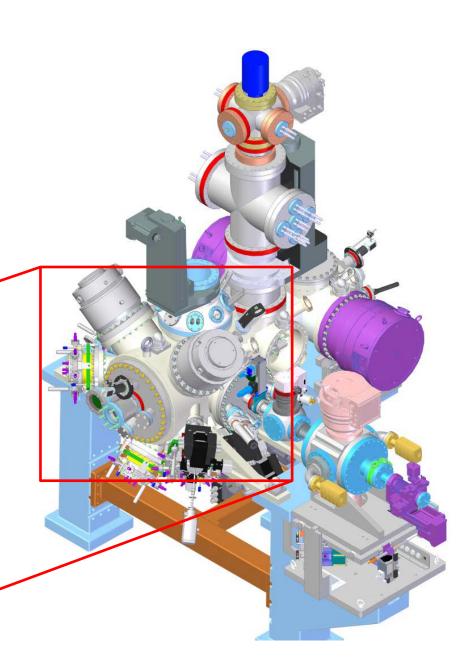
Science:

- Non-linear X-ray physics on small samples
- Time-resolved fs molecular dynamics: isomerization, fragmentation, ...

Mazza et al. 5 3648 Nat. Commun. (2015)

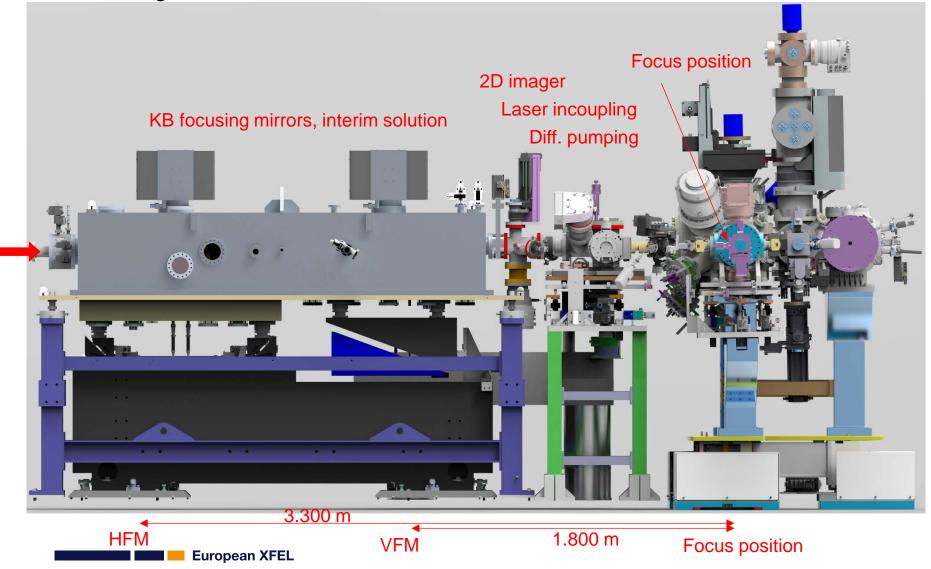
Erk et al 345 288 Science (2014)

The AQS instrument


Techniques:

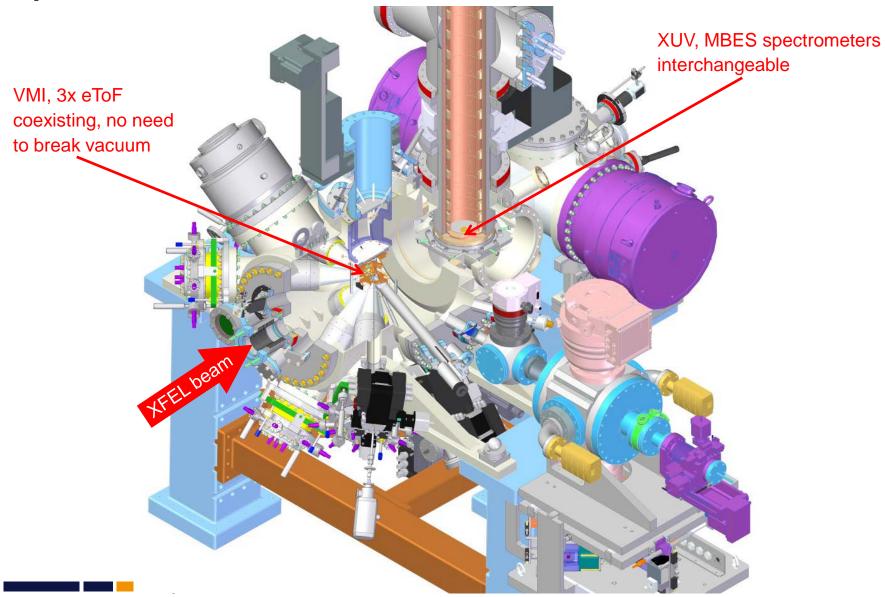
- Angle resolved electron spectroscopy
- Ion spectroscopy
- Multi-particle coincidence:
 - UHV, 10⁻¹⁰ mbar
- electr.-electr., ions-ions, electr.-ions
- XUV fluorescence

Samples:


Gas-phase: atoms, molecules

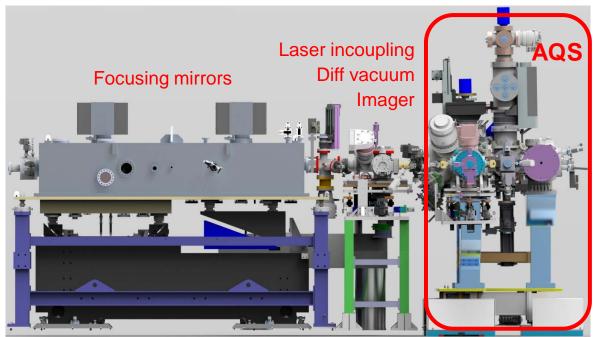
Geometry of the SQS-AQS instrument

during 1st users beam, with interim focus solution

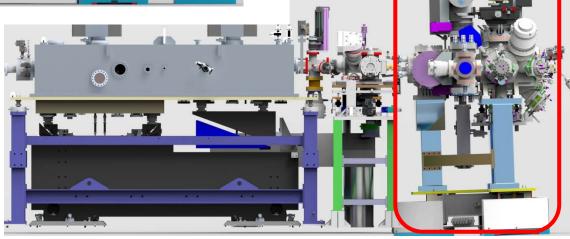

Spectrometers of the SQS-AQS instrument

	Electron Energy	5		Electrons		Detection
	, o,			Kinetic Energy	Rep. rate	
eTOF, x3	10,000	~0.14%	Yes	0-3000 eV	≤4.5 MHz	Electrons, or lons
VMI	100	100%	Yes	0-1200 eV	MHz or ≤10 Hz	Electrons, or lons
Magnetic bottle, MBES	100	≥50%	Yes	0-3000 eV	≤4.5 MHz	Electrons and lons
XUV spectrometer	-	-	No	-	≤4.5 MHz	Photons

They can also run together, or even in coincidence

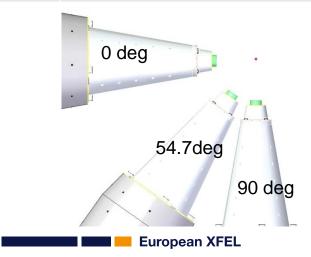

When to use each spectrometer?				
eTOF	Best electron energy resolution ∆E Full energy range 10 – 3000 eV			
VMI	100% of 4π Angle resolved			
Magnetic bottle, MBES	Full energy range 10 $-$ 3000 eV 100% of 4π Electrons-ions coincidence			

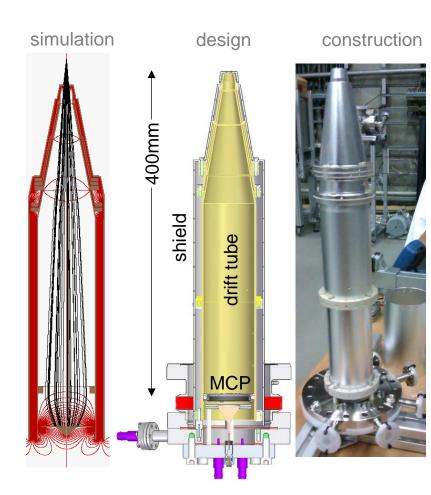
Spectrometers of the SQS-AQS instrument



Geometry of the SQS-AQS instrument

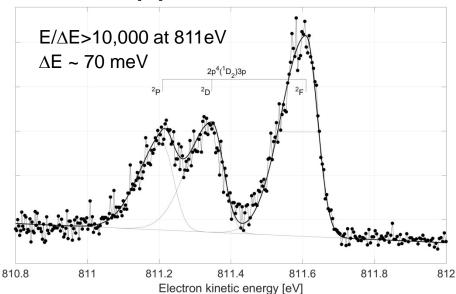
Air-pads to exchange/move chambers

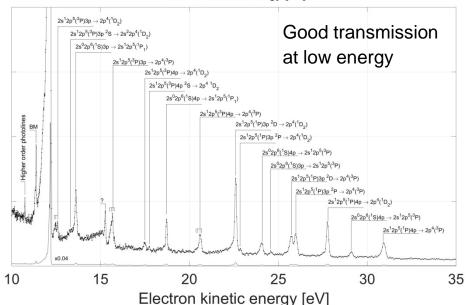

AQS station turned 180deg to switch from VMI/eTOF to MBES



Electron time-of-flight spectrometer(s)

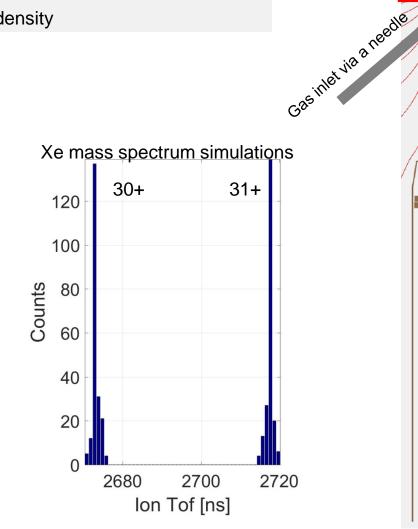
- Commissioned at DESY
- Confirmed world record resolution
 - $ightharpoonup \Delta E = 70 \text{meV} @ 811 \text{ eV},$
 - ► $E/\Delta E > 10000$
- Full energy range: 0 3000 eV
- All 3x tof are installed!


eTOF specifications				
Length	400mm			
Detector	Hamamatsu, MCP, diam. 27mm, single anode			
Readout	Digitizer 3GHz 10GS/s 14bit			
Acceptance	0.14% of 4π			



Electron time-of-flight spectrometer(s)

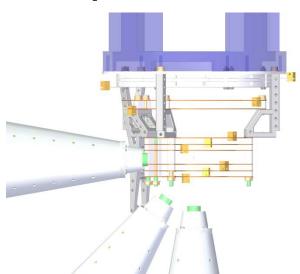
- Keys for resolution and transmission:
 - ► Low magnetic field:
 - 1μT, 10 mG, 2% of Earth
 - ► Particle optics simulations
 - ► Fast detector and electronics:
 - 450 ps FWHM, 120 ps rise
 - 3 GHz, 10 GS/s
 - 14 bit digitizer -> no need for preamp.

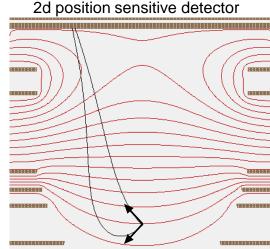


VMI + eTOF for ions spectroscopy

- VMI+eToF spectrometer(s) can work together as an ion spectrometer
 - ► VMI electrodes push/pull ions into the tof tube
 - Simulations indicates good mass resolution
 - Effective diagnostic of beam power density

Sorokin et al. Phys. Rev. Lett. (2007)




Rudek *et al.* Nat. Phot. (2012)

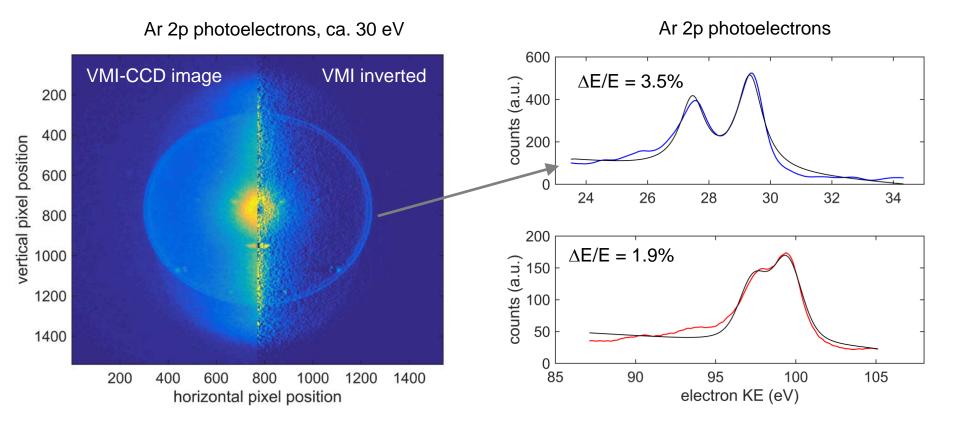
European XFEL

Velocity Map Imaging, VMI, spectrometer

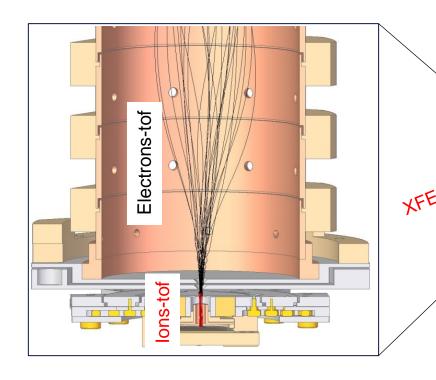
- Energy ≤500 eV (mode1), ≤1200 eV (mode2)
- Resolution ΔE/E confirmed 2%, aiming for 1%
- Detector:
 - ▶ 10 Hz: Phosphor-CMOS
 - ► MHz: PImMS, Timepix3 (tentative)
- Spectroscopy or coincidence possible
- Can run in parallel with the ToF
- Can do coincidence with the ToF
- Can run in pulsed-mode, for ions

MHz capability with "tme-stamping" cameras

	PImMS2	TimepixCam
Pixels	324x324	256x256
Hits/pix	≤4	≤1
Dead time	150 ns	1.5 μs
Rep. rate	10 Hz	Continuous
Person	Oxford Univ. Brouard and Vallace group	Brookhaven NL A. Nomerotski


K. Amini et al., Rev. Sci. Inst. 86, 103113 (2015)

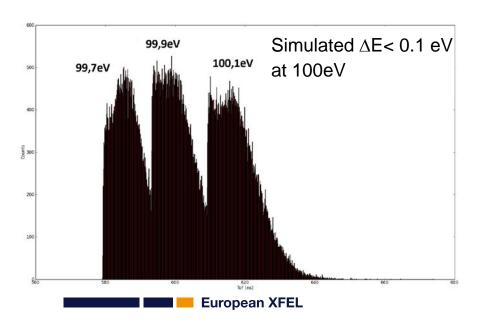
M. Fisher-Levine & A. Nomerotski, J. Instrum. 11, C03016 (2016)

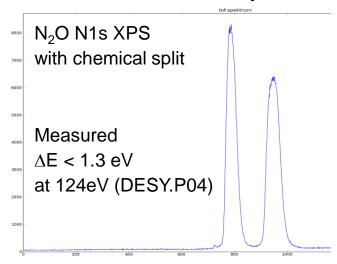

Velocity Map Imaging spectrometer

Prototype commissioned at DESY, 2016

MBES, magnetic bottle spectrometer

- XFEL.SQS own-design (S.Deinert)
- Early model existing at DESY
- Resolution aimed at ΔE ≤ 1 eV
- Electrons-ions or electrons-electrons coincidence possible
- Electron energy ≤ 3000 eV, with ≥ 50% acceptance
- Rep. rate ≤ 4.5 MHz (electrons only)


Innovative MCP "funnel" concept to favor coincidence


MBES, magnetic bottle spectrometer

Simulation from present model:

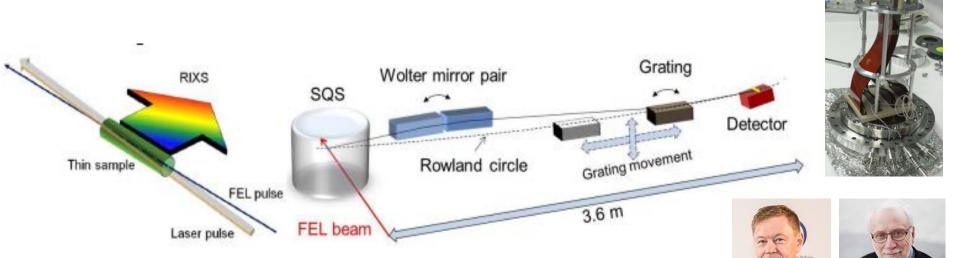
Simulated ∆M< 2amu at 100amu

Measurements from early model:

PLEASE:

Contact us with your specific requests to know what specifications are to be expected (Mass or Energy resolution, transmission, ...)

1-D Imaging XUV spectrometer


Not compatible with interim optics: not available on day 1

- In-kind contribution from J.E. Rubensson, Uppsala
 - ► Spectroscopy in vertical direction
 - ► Imaging along the beam in horizontal direction
 - ► Gas or liquid samples
 - ► Pulse characterization

Expected performance

- Photon energy range 250 1000 eV
- Energy resolution ∆E/E ~ 10,000
- Spatial resolution along the beam 10μm = 1fs
- Acceptance 5x10⁻⁶ of 4π

MCP-stack, 128-fold, DLD multihit detector

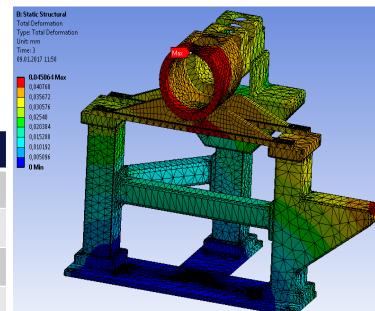
J.E. Rubensson J. Nordgren
They are here, speak with them!

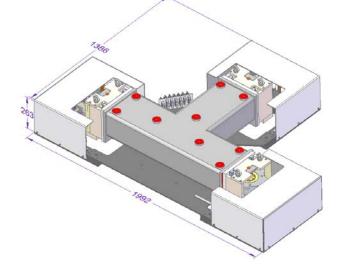
European XFEL

Summary: AQS readiness for 1st users beam

	Status for 1 st users on day-1	Maximum shot resolved rep. rate	Sample of day-1	Detector	Contact person
etof, x3	Ready	Any	Gas	MCP assembly + 3GHz 10GS digitizer	Alberto De Fanis
VMI	Ready	10 Hz with CMOS MHz with Timestamp camera	Gas	MCP + Phosphor, with sCMOS or Timestamp camera	Tommaso Mazza Rebecca Boll
MBES	Ready	Any, electrons ~ 100 kHz, ions	Gas	MCP + digitizer + sCMOS imaging	Sascha Deinert

AQS support


- Designed by Y.Ovcharenko with Newport, ready to be installed.
- Stable steel base, Aluminium legs
- Tripod uncoupled system for leveling Z vertical axis motion, a longitudinal X and lateral Y motion, 2 rotation axis Theta (X, Z) and 1 rotation axis Theta Y.


	Range	Resolution	Repeatability	Speed
Travel X, Y	≤100 mm	≤ 1µm	≤ 5 μm	≤ 2 mm/s
Travel Z	≤150 mm	≤ 1µm	≤ 5 μm	≤ 0.2 mm/s
Rx Ry	≤ 2°	≤ 1m°	≤ 5 m°	≤ 0.01 m°/s
Rz	≤ 2°	≤ 1m°	≤ 5 m°	≤ 0.01 m°/s

ANSYS FEA analysis combined with real hall measurement: extent of vibrations can be tolerated

Support summary:

- Delivered!
- Stable. Simulations shows that vibrations of the floor can be tolerated
- Remotely controlled
- 6-axis adjustable in fine steps and large travel range

Thank you for your attention

The SQS team

- A. Achner
- T.M. Baumann
- R. Boll
- A. De Fanis
- S. Deinert
- P. Grychtol
- M. Ilchen
- T. Mazza
- M. Meyer
- J. Montaño
- Y. Ovcharenko
- N. Rennhack
- R. Wagner
- P. Ziołkowski

- In-kind contribution:
 - XUV spectrometer
 - ► J.E. Rubensson, J. Nordgren (Uppsala)

- Commissioning of spectrometers with synchrotron beam
 - DESY P04
 - ▶ J. Viefhaus, J. Buck, G. Hartmann, L. Glaser,
 - XFEL Diagnostic group
 - ► J.Liu