High precision Time Projection Chamber (TPC)

Uwe Krämer and Paul Malek

TPC performance

- TPC principle used since late 1970s for tracking detectors
- Traditionally using multi-wire proportional chambers for gas amplification / readout
- Modern Micro Pattern Gaseous Detectors (MPGD): reduced ExB distortions and increased granularity of readout
- \rightarrow higher spatial resolution
- → reduced material budget

rφ single point resolution of older TPCs:

• DELPHI r ϕ resolution = 250 μ m • TRIUMF r ϕ resolution = 180 μ m • ALEPH r ϕ resolution = 150 μ m • ALICE r ϕ resolution = 350 μ m

Goal is to build a large scale TPC achieving¹:

- O(200) space points along each track • $\sigma \sim 100 \ \mu m$ single point in the r ϕ plane • $\sigma \sim 300 \ \mu m$ single point in the z direction.
- $\bullet \sigma \sim 10^{-4}/\text{GeV/c}$ momentum resolution
 - The Large Prototype at the testbeam

TPC readout modules using Gas Electron Multiplier (GEM) in integrated structure²:

- Three stacked GEM foils
- Amplification of ~ 30 per foil = total amplification of ~27000
- T2K gas used for drift and amplification
- Ceramics grid between foils for spacing and mechanical stability
- Pad plane for electric readout
- (1.26mm x 5.85mm)
- 4864 channels per module

The design of the module is driven by operation goals:

- GEMs are divided into 4 sectors
- \rightarrow HV stability
- Triple GEM stack
- \rightarrow stable operation at high gain
- Thin ceramic mounting structure
- good GEM flatness and minimal \rightarrow insensitive area
- 28 space points along track per module

Permanent setup in testbeam area T24/1:

- IT Magnet
- Movable around 3 axes
- 85 cm usable inner diameter
- Scintillator triggers for beam and cosmics
- Laser alignment system
- Two phase CO₂ cooling system
- 1 to 6 GeV electrons available

Large prototype built to fit within PCMAG to compare different technologies:

- Length = 61 cm
- Diameter = 77 cm
- able to host up to 7 modules of dimensions ~22x17 cm².
- Designed for up to 350 V/cm drift field = 25 kV cathode voltage

Module Production and Flatness

Electron collection and extraction, and thereby the effective gain, as well as dE/dx resolution depend on GEM flatness.

Dedicated tooling developed to³:

Provide reliable and reproducible gluing of

Single hit resolution

Extrapolation of testbeam results to ILD parameters shows²:

- \sim ~100 µm single point r ϕ resolution is reachable
- \sim ~350 µm single point z resolution has been achieved
 - Single point ro resolution versus drift length
- Single point z resolution versus drift length

GEMs onto a ceramics grid

 Allow controlled stretching of the foil to ensure reproducible improved flatness.

ROPPERI - Readout Of a Pad Plane with ElectRonics designed for plxels GEM Pad plane Flat surface for bonding Pad board Electronics Bump bonds Advantages: **VHDCI** connector Timepix chip

Double hit resolution (DHR)

Improvement of hit separation algorithm:

Previous algorithms = simple either or hit assignment \rightarrow DHR \sim 5 mm. New algorithms = use of the pad

response function for hit separation \rightarrow DHR ~2 mm.

dE/dx resolution

Double hit resolution efficiency over track distance

High number of hits allow particle identification by dE/dx:

Extrapolation of testbeam results show: \rightarrow ~5% resolution on dE/dx is reachable with small ILD size TPC.

(ALICE = 9% dE/dx resolution)

- Highly integrated high granularity readout
- dE/dx determination by measurement of primary ionization cluster
- Nearly arbitrary pad sizes
- Square pads, several pads per charge cloud \rightarrow improvement of spatial resolution Cluster counting separation power

100 150 200 50 # hits in track

1) The International Linear Collider Technical Design Report - Volume 4: Detectors Behnke et. al., arXiv:1306.6329 [physics.ins-det]

2) A time projection chamber with GEM-based readout, D. Attié et. al. NIM A, Volume 856, 2017, Pages 109-118

3) Development of a GEM based TPC Readout for ILD, Paul Malek, arXiv:1703.05719 [physics.ins-det]

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

Logo	Logo	Logo

