

Characteristics of a Diamond like Carbon Coated (DLC) GEM

AMIR ALFARRA, SERHAT ATAY, IVOR FLECK

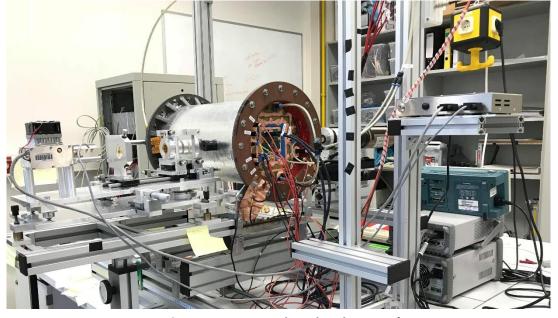
University of Siegen
Department of Physics
Experimental Particle Physics

7th Linear Collider School 2018
Frauenchiemsee 2018

outline

Introduction

- Time projection chamber (TPC)
- Gas electron multiplier (GEM)
- Properties of diamond like carbon (DLC) coated GEM
- Two types of DLC Coatings
- Lab in Siegen
 - Test Chamber
- Measurements and Results
 - voltages and sparks limitations
 - Gain at variants voltages
 - Energy resolution of DLC GEM
- Conclusion and Outlook

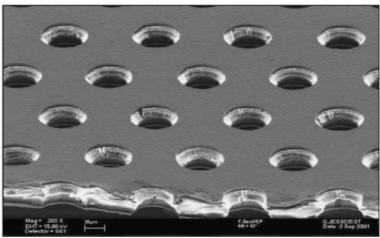


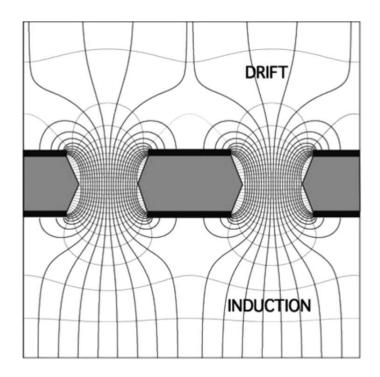
Time Projection Chamber (TPC)

- Proposed as a main tracker detector for The International Linear Collider (ILD)
- good track separation
- low material budget
- Resolution of 9×10^{-5} /GeV/c at planned magnetic field of 3.5 T*

Gas Electron Multiplier (GEM) has great effort to improve TPC performances when used as **amplification device**.

TPC prototype at university siegen Lab


*R. Diener, Physics Procedia, 00 (2012) 1-8

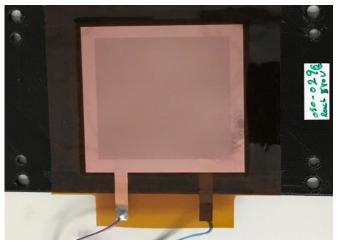


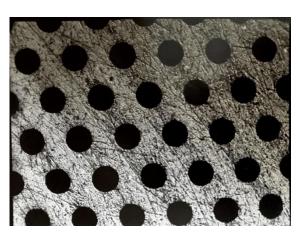
Gas electron multiplier (GEM)

- Invented by F. Sauli at 1996 in CERN
- Consist of two conductor layers (copper) separated by an insulator (Kapton) with a high density of holes.
- High voltage applied between both conductors thus producing high electric field inside the holes.
- Problem: <u>limitation in gas gain due to electrical</u> discharges.

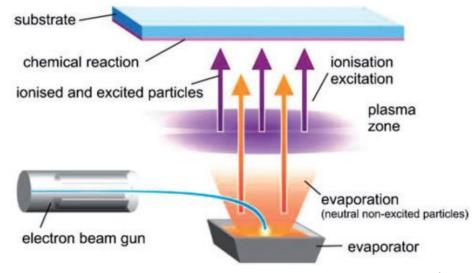
Electron microscopic picture for typical GEM with 50 μ m thickness, holes diameter of 70 μ m, pitch of 140 μ m. *

Electric field lines inside the GEM holes*


*F. Sauli, Nuclear Instruments and Methods in Physics Research A 805 (2016) 2-24



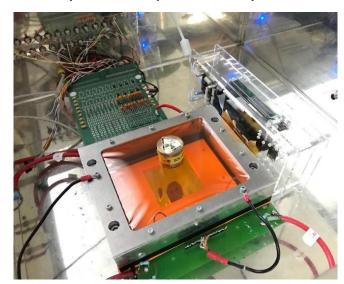
Diamond Like Carbon coated (DLC) GEM


- Purpose of this coating is to reduce the probability of discharge and thus allowing us to increase the GEM voltage to reach higher gain
- Diamond Like Carbon coated GEM: Both electrodes of GEM covered by a layer of diamond like carbon with thickness of $\approx 0.1 \ \mu m$
- Coating done by <u>Fraunhofer Institut für Oberflächentechnik</u> using <u>Plasma-assisted Chemical Vapor (PACVD) procedure.</u>
- Types of coatings: SICON (a-C:H:Si:O) & SICAN (a-C:H:Si), the difference is the existence of oxygen in SICON coating.

DLC Coated GEM

Microscopic picture for DLC coated GEM

The principle of plasma-assisted electron beam evaporation*


*Daniela G Coblas, Aurelian Fatu, Abdelghani Maoui, Mohamed Hajjam, Manufacturing textured surfaces: State of art and recent developments, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Tribology, 2015

Lab of university of Siegen

- Test Chamber: small gas drift detector (120 mm×184 mm)
- **Purpose** : investigate the GEM's performance
- Ar-CO₂ gas mixture (80%-20%) respectively
- Fe⁵⁵ emits gamma with 5.89 keV
- Pad Readout system coupled to very sensitive preamplifier.

The Test Chamber at University of Siegen

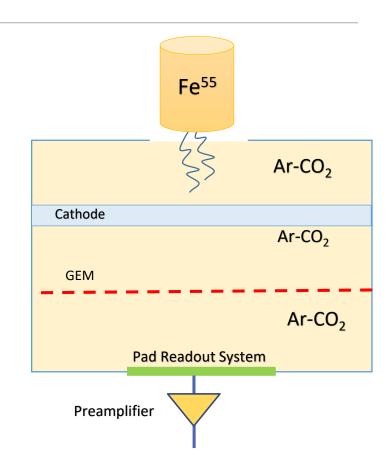


Illustration for the GEM inside the chamber

Measurements and Results

GEM Voltage

SICON

- Varied voltages between (370 V 540 V)
- Sparks observed for larger than 510 V
- Breakdown voltage is (525 V 545 V)
- Safe voltage is 510 V

SICAN

- Varied voltages between (370 V 480 V)
- No sparks observed below 480 V
- Breakdown voltage ≥ 480 V

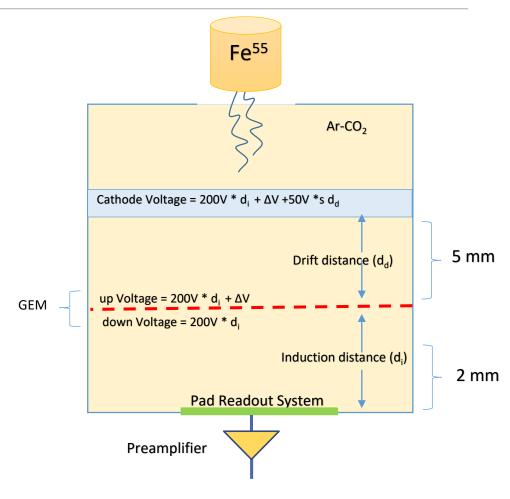
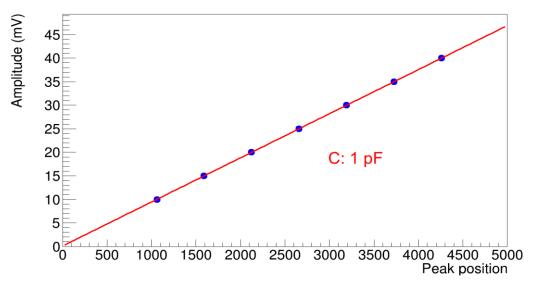
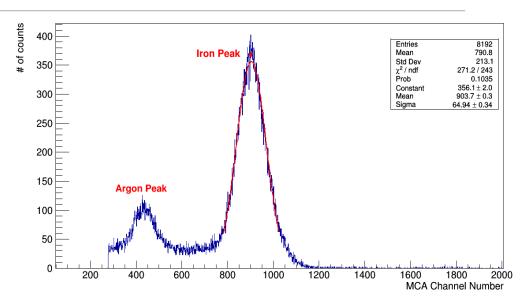


Illustration for the distances and voltages inside test chamber

DLC Coated GEM Gain Calculation


• Gas Gain given by the equation: $G_g = \frac{N_f}{N_i}$:

N_i: number of electrons after amplification


N_i: number of the initial electrons

$$N_i = \frac{5900 \text{ eV}}{26 \text{ eV}} \times 0.80 + \frac{5900 \text{ eV}}{34 \text{ eV}} \times 0.20 = 216 \text{ electron}$$

26 eV and 34 eV are average energy per ionization for Ar and CO₂ respectively.

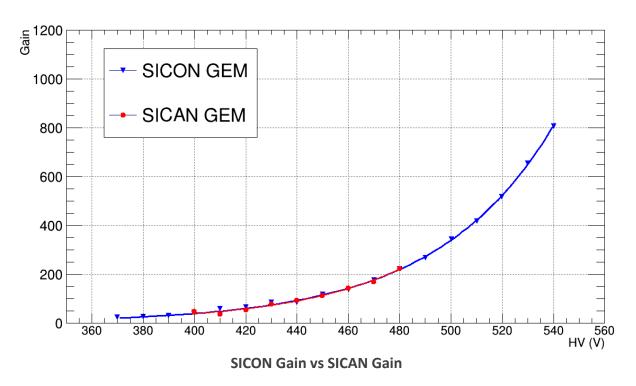
Calibration fit with a pulse generator.*

Typical MCA spectrum of DLC GEM

- total charge after amplification is given by:
- 1. $Q = N_f \times e$; where eis the electron charge 1.6×10⁻¹⁹ C

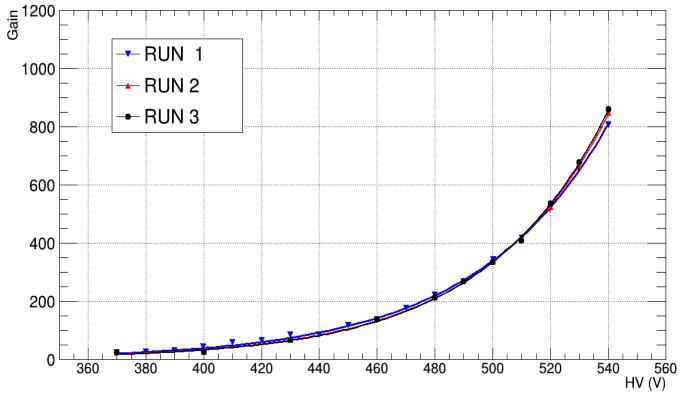
2.
$$N_f = Q/e$$

- 3. $Q=(P_0+P_1 \times Channel no.) \times Const.$
- 4. Therefore, $\mathbf{G_g} = \frac{(P_0 + P_1 \times \text{Channel no.}) \times \text{Const.}}{216 \times 1.6 \times 10^{-19}}$


*Done by Serhat Atay

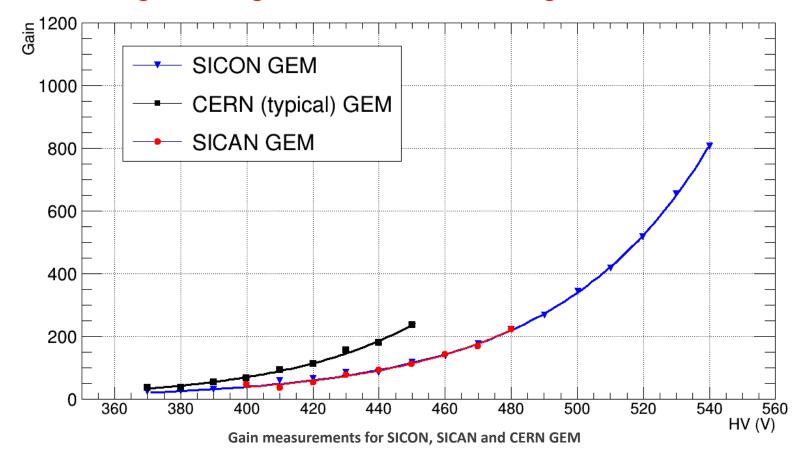
DLC GEM Gain

- SICON & SICAN GEM have almost the same gain
- Maximum gain for SICAN ≈ 200 at 480 V
- SICON GEM gain ≈ 800 at 540 V
- SICON GEM affected by several sparks,
 the maximum voltage < 540 V, therefor gain < 800
- Safe operating voltage for SICON GEM is
 510 V
- because of the lower voltage, investigation on SICAN has been terminated!

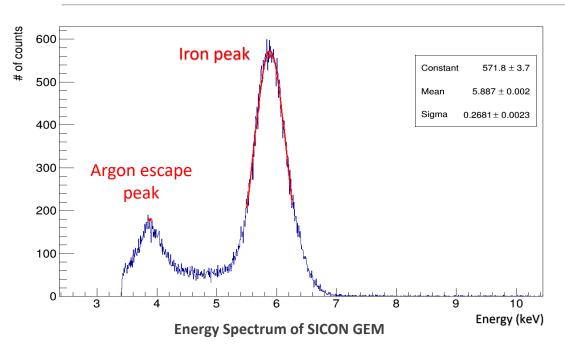


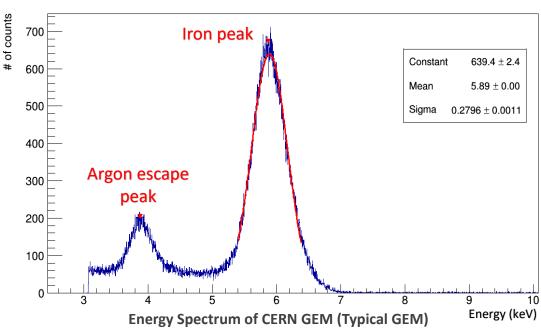
Gain stability for SICON

- Gain corrected to pressure 1 atm
- SICON GEM gain almost stable
 after 3 weeks
- every point is mean of 30 min measurements
- waiting time between runs is one week


3 week measurements with SICON coated GEM

DLC Coated GEM vs CERN GEM (typical GEM)


- Gain
 - SICON GEM reaches higher Voltage than CERN GEM, thus gives higher Gain



Energy Resolution

•
$$Energy Resolution(R) = \frac{FWHM}{Mean}$$

FWHM =
$$2\sqrt{2 \ln 2} \times \sigma$$
 ; since the fit is Gaussian

$$R_{(SICON)} = \frac{2.3548 \times 0.2681}{5.887} = \mathbf{0.10724}$$

$$R_{(CERN)} = \frac{2.3548 \times 0.2796}{5.89} = 0.1117$$

Conclusions

- The **goal** from Diamond Like Carbon Coated (SICON) accomplished
- SICON GEM reaches 540 V with gain = 800
- 510 V is the safe operating voltage for SICON with gain = 400
- Energy resolution for SICON GEM is almost same of typical GEM (CERN)
- SICAN GEM cannot reach higher voltages, so it is neglected.

Outlook

- Investigating SICON GEM gain at different drift distances.
- developing SICON coat to reach higher voltages.
- Investigating energy resolution using variant gamma source