
Profling basf2 for fun and proft
Hadrien Grasland

LAL – Orsay

2

Some context

● France is joining Belle 2 this year, via LAL & IPHC
● I am working on cross-experiment software projects:

– Thread-safe condition handling in Gaudi

– ACTS tracking toolkit

● I think ACTS could be useful to Belle 2
– Genfit lacks maintainers, known to have perf issues

– ACTS wants to be fast and usable by many experiments

● In 2018, I’ll have some time to make it happen

3

General plan

● Analyze performance of Belle 2 tracking
● Look for hot spots, see how I can help
● Where sensible, study viability of ACTS integration
● Improve ACTS whenever it isn’t ready

4

Analysing performance

● Nils gave me a simple fitting job to experiment with
– Perform track fitting on 100 Y(4S) BB events→

– ~200 MB dataset, running time of ~40s

● I started to study it using Linux perf (aka perf_events)
– Sampling profiler based on hardware performance counters

– Native code execution, very low measurement overhead

– More precise than callgrind on CPU events, system-wide

– Free and open-source, integrated in the Linux kernel

– Main drawback: Features depends on CPU + kernel version

5

A word about call graphs

● The usefulness of fat profiles is limited
– I spend 20% of my time in __acos… but I have no idea why

– Small utility functions are spread around, no big picture

● Call graphs help by explaining who calls what function
● Non-trivial to measure, perf supports several methods:

– Frame pointer: Nice in theory, but compilers broke it…

– Stack copies + DWARF: Easy to set up, but high overhead
that grows w/ stack chunk size + some artifacts

– Last Branch Record: Fast & reliable, but need recent kernel
(4.1+) and CPU (>=Haswell); short call chains (O(10) frames)

6

What call graph setup?

● Some very deep stack traces, especially in ROOT & Python

● Too much for LBR, must use DWARF (and get debug info)
– Even the largest stack copies supported by perf (~64KB)

won’t span the largest traces (< 2% of stack samples)

7

Measurement setup

● 1 kHz sampling of 64 KB stack copies means perf must
process >64 MB of data per second!
– Put raw output on tmpfs to reduce IO pressure[1]

– For larger profiles, RT priority is also an option

● In the end, I used the following profiling setup:

perf record
-a // Measure all system activity
--call-graph=dwarf,65528 // Use DWARF w/ ~64KB samples

 -F 1000 // Use 1 kHz sampling rate
 -o /dev/shm/perf.data // Write output to tmpfs

basf2 02_fit.py -i simulated.root // Command under study

[1] If you use this trick yourself, keep in mind that 1/it is easy to run out of RAM and 2/all unsaved data will be lost on reboot.

8

Top-level results

● Need to tell perf report about our crazy stack traces:

perf report --max-stack=65535 -i /tmp/perf.data

● …and in the end we get this at the top of the profile:
– 86% of correct stack samples from basf2[2]

● 98% of that in Belle2::EventProcessor::process
– 53% in Belle2::EventProcessor::processInitialize
– 47% in Belle2::EventProcessor::processCore

● That is a suprising lot of initialization for a 40s job…

[2] As for what corrupted the remaining 14% samples, I’m currently studying it with the help of perf experts.

9

Initialization profile

● Under Belle2::EventProcessor::processInitialize, we find:
– 95% in Belle2::GeometryModule::initialize

● 56% G4GeometryManager::CloseGeometry
● 27% Belle2::GeoMagneticField::create

– 52% decompression of gzipped text stream
– 43% string double conversions (strtod)→

● 9% Belle2::EKLM::GeoEKLMCreator::create
– 97% in Belle2::EKLM::AlignmentChecker::checkAlignment,

itself mostly calling Belle2::EKLM::Polygon2D::* funcs
● Remaining 8% scattered in <3% funcs, not worth investigating today

10

Initialization conclusions

● Initialization is not the most pressing concern, but we
might get easy performance in smaller jobs by…
– Understanding why Geant4 geometry initialization is so slow

– Using a more efcient B field map format than gzipped CSV

● Would not bother with EKLM yet, as if we go back to
absolute numbers it’s only 3% of the total CPU time…

11

Core processing profile

● Most important part: will scale up with input size!
– 82% in genfit::DAF::processTrackWithRep

● 65% in genft::RKTrackRep::Extrap
● 8% in genfit::KalmanFitterRefTrack::fitTrack
● 6% in genfit::DAF::calcWeights
● 5% in Belle2::CDCRecoHit::constructMeasurementsOnPlane
● Remaing 16% spread across many <3% functions…

– 15% in Belle2::RootInputModule::event
● 99% is spent in ROOT’s TTree::GetEntry
● Note that the TTreeReader API is preferred these days…

● 20% of absolute time spent doing Runge-Kutta, why?

12

RKTrackRep::Extrap profile

● 48% in G4Navigator::*
– Doing various kinds of geometry lookups

● 20% in genfit::RKTrackRep::RKPropagate
– 64% in genfit::FieldManager::getFieldVal

– Rest seems to be computations

● 11% in genfit::MaterialEffects::effects
● 7% in genfit::RKTrackRep::calcForwardJacobianAndNoise
● Remaining 14% scattered in <2% functions

13

Core processing conclusions

● TrackFitter has very deep call chains, many small funcs
– Spent lots of time fattening data for you in these slides :)

– We probably lose nontrivial CPU just in function calls/rets…

– May want to investigate inlining, link-time opts, PGO

● Top regions of interest for optimization:
– Why so much time in Geant4 geometry again?

– Suspicious time in BField lookups too

– After that, can study ROOT IO & actual computations…

14

General conclusions

● Overall, I would say the first performance priorities are…
– Geant4-based geometry (does it do the right thing, and is it

doing it as efciently as possible?)

– Magnetic field map (better on-disk format & runtime access)

– Why the compiler inlines so little of our hot code

● As far as possible collaborations go…
– I’m working in the same project as the VecGeom team,

which promises faster and G4-compatible geometry code

– ACTS magnetic field is currently receiving lots of attention

15

Questions? Comments?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

