Analytic resummation: motivation and practical examples

Lais Schunk

DESY Students seminar

January 22, 2018

Lais Schunk

Analytic resummation

January 22, 2018 1 / 25

4 15 16 16 15

▲ 4 1 b

Presentation Plan

2 Simple example: Jet mass resummation

Other applications

Lais Schunk

æ

Presentation Plan

Simple example: Jet mass resummation

3 Other applications

3

What is resummation?

- Suppose one wants to compute a QCD observable
- We first try a **fixed-order expansion** in the strong coupling α_s

$$\langle O \rangle = \sum_{n} \alpha_{s}^{n} c_{n}$$

Fixed-order \rightarrow truncating this series at a given *n*

▲ 四 ▶

What is resummation?

- Suppose one wants to compute a QCD observable
- We first try a **fixed-order expansion** in the strong coupling α_s

$$\langle O \rangle = \sum_{n} \alpha_{s}^{n} c_{n}$$

Fixed-order \rightarrow truncating this series at a given *n*

- Problem: cases where c_n is not "well behaved"
 → FO expansion does not converge
- Happens when there is a strong hierarchy between scales $\rightarrow c_n$ enhanced by large logarithms (more on that later) e.g. Jet mass at boosted regimes $m \ll p_t$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

What is resummation?

- Suppose one wants to compute a QCD observable
- We first try a **fixed-order expansion** in the strong coupling α_s

$$\langle O \rangle = \sum_{n} \alpha_{s}^{n} c_{n}$$

Fixed-order \rightarrow truncating this series at a given *n*

- Problem: cases where c_n is not "well behaved"
 → FO expansion does not converge
- Happens when there is a strong hierarchy between scales $\rightarrow c_n$ enhanced by large logarithms (more on that later) e.g. Jet mass at boosted regimes $m \ll p_t$
- Need an all-order (in α_s) resummed calculation

・ロ・ ・ 雪 ・ ・ ヨ・

Why do we need resummation? Better understanding

• Parton shower Monte Carlo generators are very useful tools, but numerically costly and the physical message is not always clear

• Example: ROC curves for different jet substructure methods

	6		
l ais	്റ	hun	k.

Why do we need resummation?

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop better tools (*e.g.* boson and top taggers)

< A□ > < ∃</p>

Why do we need resummation?

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop better tools (*e.g.* boson and top taggers)
- Obtain more precise results
 - \rightarrow Parton Shower only provide the lowest logarithm accuracy
 - \rightarrow Resummation can achieve higher accuracies
 - \rightarrow Results are systematically improvable

Why do we need resummation?

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop better tools (*e.g.* boson and top taggers)
- Obtain more precise results
 - \rightarrow Parton Shower only provide the lowest logarithm accuracy
 - \rightarrow Resummation can achieve higher accuracies
 - \rightarrow Results are systematically improvable
- Compute robust uncertainty bands

 \rightarrow Correct assessment of the higher orders corrections we are neglecting

< 日 > < 同 > < 三 > < 三 >

Disclaimer

- The goal is not to present a formal course
- ❷ Mostly centered in jet substructure techniques in boosted regimes → Resummation techniques have many different applications
- Solution There are many different techniques/formalisms for resummation
 - "Plain" perturbative QCD (used in following example)
 - Effective field theories
 - \rightarrow Soft-Collinear Effective Field (SCET)
 - \rightarrow Non-Relativistic QCD (NRQCD)
 - . . .

In the end, all these formalisms are equivalent

Analytic resummation

- ロ ト - (同 ト - - 三 ト - - 三 ト

Limitations

- Resummation rarely describe all phase space
 - \rightarrow needs to be matched to a fixed-order (FO) calculation
 - \rightarrow one needs to avoid double-counting of the terms
 - \rightarrow this is a non-trivial process
- Limitation of the analytical approach is the poor understanding of **non-perturbative effects** (underlying event and hadronization)
- In practice : FO + Resum + Parton Shower
 - \rightarrow Need an external Monte Carlo generator

Presentation Plan

2 Simple example: Jet mass resummation

3

- Integrated distribution for the jet mass m;
- Simplest case: jet with only one emission q
 ightarrow q + g
 - ightarrow p_T is the jet transverse momentum
 - \rightarrow R is the characteristic jet radius

$$m^2 \simeq p_T^2 z (1-z) \theta^2$$

• **Boosted jets** regime $\rightarrow p_T \gg m$

• From Feynman rules, we can write the distribution as

$$\Sigma(>m^2) = \frac{\alpha_s}{2\pi} \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz P_{qg}(z) \Theta\left(p_T^2 z(1-z)\theta^2 - m^2\right)$$

2

• From Feynman rules, we can write the distribution as

$$\begin{split} \Sigma(>m^2) &= \frac{\alpha_s}{2\pi} \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz P_{qg}(z) \Theta\left(p_T^2 z(1-z)\theta^2 - m^2\right) \\ \Sigma(\rho) &= \frac{\alpha_s}{2\pi} \int_0^1 dz P_{qg}(z) \log\left[\frac{z(1-z)}{\rho}\right] \Theta\left(z(1-z) - \rho\right) \\ \rho &= \frac{m^2}{R^2 \rho_T^2}, \qquad P_{qg}(z) = C_F \frac{1 + (1-z)^2}{z}. \end{split}$$

æ

• From Feynman rules, we can write the distribution as

$$\begin{split} \Sigma(>m^2) &= \frac{\alpha_s}{2\pi} \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz P_{qg}(z) \Theta\left(p_T^2 z(1-z)\theta^2 - m^2\right) \\ \Sigma(\rho) &= \frac{\alpha_s}{2\pi} \int_0^1 dz P_{qg}(z) \log\left[\frac{z(1-z)}{\rho}\right] \Theta\left(z(1-z) - \rho\right) \\ \rho &= \frac{m^2}{R^2 \rho_T^2}, \qquad P_{qg}(z) = C_F \frac{1 + (1-z)^2}{z}. \end{split}$$

æ

• From Feynman rules, we can write the distribution as

$$\begin{split} \Sigma(>m^2) &= \frac{\alpha_s}{2\pi} \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz P_{qg}(z) \Theta\left(p_T^2 z(1-z)\theta^2 - m^2\right) \\ \Sigma(\rho) &= \frac{\alpha_s}{2\pi} \int_0^1 dz P_{qg}(z) \log\left[\frac{z(1-z)}{\rho}\right] \Theta\left(z(1-z) - \rho\right) \\ \rho &= \frac{m^2}{R^2 \rho_T^2}, \qquad P_{qg}(z) = C_F \frac{1 + (1-z)^2}{z}. \end{split}$$

 $\bullet~{\rm For}~{\rm boosted}~{\rm jets}\to\rho\ll 1$

$$\Sigma(
ho) \simeq rac{lpha_s \mathcal{C}_F}{\pi} \left[rac{1}{2} \log\left(rac{1}{
ho}
ight)^2 - rac{3}{4} \log\left(rac{1}{
ho}
ight) + \mathcal{O}(1)
ight].$$

3

- For higher orders in α_s \rightarrow terms like $\left[\alpha_s \log(1/\rho)^2\right]^n$
- Boosted jets

$$\rightarrow \rho = m^2/(R^2 p_T^2) \ll 1$$

- $ightarrow lpha_{s} \log(1/
 ho)^{2} \sim 1$
- \rightarrow fixed order expansion in $\mathcal{O}(\alpha_s^n)$ does not converge.

イロト 不得下 イヨト イヨト 二日

- For higher orders in α_s \rightarrow terms like $\left[\alpha_s \log(1/\rho)^2\right]^n$
- Boosted jets

$$\rightarrow
ho = m^2/(R^2 p_T^2) \ll 1$$

- $ightarrow lpha_{s} \log(1/
 ho)^{2} \sim 1$
- \rightarrow fixed order expansion in $\mathcal{O}(\alpha_s^n)$ does not converge.

- ∢ /⊐ ▶

3

- **Resummation at all orders** supposing $\rho \ll 1$.
- Only interested at the dominating term $\sim \alpha_s \log(1/\rho)^2 \rightarrow$ Leading Logarithm (LL)
- \bullet Virtual emissions \rightarrow cancel out soft and collinear divergences.

Resumed results

• We suppose independent emissions \rightarrow constraints as an exponential factor.

Resumed results

• If we take only the dominant logarithm terms

$$\Sigma(\rho) = 1 - \frac{\alpha_{s} C_{F}}{\pi} \exp\left[-\frac{\alpha_{s} C_{F}}{2\pi} \log\left(\frac{1}{\rho}\right)^{2}\right]$$

 \rightarrow leading-logarithm (LL) accuracy

- 20

イロト イポト イヨト イヨト

Resumed results

• If we take only the dominant logarithm terms

$$\Sigma(\rho) = 1 - \frac{\alpha_{s}C_{F}}{\pi} \exp\left[-\frac{\alpha_{s}C_{F}}{2\pi}\log\left(\frac{1}{\rho}\right)^{2}\right]$$

 \rightarrow leading-logarithm (LL) accuracy

Comparison with experiment

• Jet mass distribution for a groomed jet (with modified MassDrop Tagger)

January 22, 2018 16 / 25

Comparison with experiment

• Jet mass distribution for a groomed jet (with SoftDrop)

Plot : CMS-PAS-SMP-16-010 NNLL + LO : Frye, Larkoski, Schwartz, Yan (2016) NLL+NLO : Marzani, LS, Soyez (2017)

Presentation Plan

Motivation

Simple example: Jet mass resummation

Other applications

Lais Schunk

э

q_T resummation

 Transverse momentum (q_T) of the Higgs boson (produced via gluon fusion);

- Resummation dominates at the small q_T region $ightarrow q_T \ll M_H$
- Logarithmic enhancements in the form $\sim \alpha_s^m \log \left(\frac{M_H^2}{q_\tau^2} \right)^{2m}$

(4) (日本)

• q_T distribution at LO + NLL

From arXiv:hep-ph/0302104

< 一型

q_T resummation

• q_T distribution at NLO + NNLL

From arXiv:hep-ph/0302104

< 1[™] >

Threshold resummation

- For Drell-Yan pair production, the threshold variable is $au=M^2/s$
 - ightarrow M is the lepton pair invariant mass
 - ightarrow is the squared center-of-mass energy of boson

- Correction from soft gluon radiation in the form of logarithm enhanced terms $\alpha_s^n \log(1-\tau)^{2n}$
- Introduced in the 80s, using Mellin transformations

General features

• Resummed physical observables can be presented in the general form

$$\begin{array}{rcl} \langle \mathcal{O} \rangle &\simeq& 1 + \alpha_{s}(L^{2} + L + 1) + \alpha_{s}^{2}(L^{4} + L^{3} + L^{2} + L + 1) + \dots \\ &\simeq& \exp\left(Lg_{1}(\alpha_{s}L) + g_{2}(\alpha_{s}L) + \dots\right) \end{array}$$

- In regions were $\alpha_s L^2 \sim 1$ truncating the series at a given order $\mathcal{O}(\alpha_s^2)$ does not converge
- In these regions, we **need resumation** $Lg_1(\alpha_s L)$ is leading-logarithm (LL) $g_2(\alpha_s L)$ is next-to-leading logarithm (NLL) ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Presentation Plan

Simple example: Jet mass resummation

3 Other applications

э

- Resummation is needed when there is a strong hierarchy between scales, fixed-order calculation is not enough
- Resummation allow for better accuracy
 - \rightarrow Parton showers are leading-logarithm
 - \rightarrow Resummed calculation can be systematically improved
- Analytical expressions allow better understanding of observables
- Computation of robust uncertainty bands
- $\bullet\,$ Limitations of analytical approach $\rightarrow\,$ non-perturbative effects

Backup

		_			
1 2		~	b.	 5	
	· · ·				124

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

Backup

		_			
1 2		~	b.	 5	
	· · ·				124

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

Lund Diagrams

	_		
210	<u> </u>	hum	
ais	N		PA

3

<ロト <問ト < 国ト < 国ト

Lund Diagrams

3

< □ > < □ > < □ > < □ > < □ >