

ENTWICKLUNG VON PROGRAMMEN

zum Auslesen und Kalibrieren eines neuartigen Detektorsystems

16. April 2018 | Alexander Steffens | Forschungszentrum Jülich – PGI/JCNS

Mitglied der Helmholtz-Gemeinschaft

INHALTSVERZEICHNIS

Einleitung

- WLSF-Szintillationsdetektor
- Jülich-Münchener Standard
- Implementierung des Detektorservers
- Kalibrierung des Detektors
- Zusammenfassung und Ausblick

INHALTSVERZEICHNIS

Einleitung

WLSF-Szintillationsdetektor

Jülich-Münchener Standard

Implementierung des Detektorservers

Kalibrierung des Detektors

Zusammenfassung und Ausblick

EINLEITUNG

PGI/JCNS - "Instrumenttechnologie"

 Realisierung von Hard- und Softwarelösungen f
ür wissenschaftliche Experimente

EINLEITUNG

PGI/JCNS - "Instrumenttechnologie"

- Realisierung von Hard- und Softwarelösungen f
 ür wissenschaftliche Experimente
- Unterstützung durch andere Jülicher Institute
 - ⇒ u. a. Entwicklung von Detektorsystemen zur Nutzung bei Neutronenstreuinstrumenten des JCNS

EINLEITUNG

PGI/JCNS – "Instrumenttechnologie"

- Realisierung von Hard- und Softwarelösungen für wissenschaftliche Experimente
- Unterstützung durch andere Jülicher Institute
 - ⇒ u. a. Entwicklung von Detektorsystemen zur Nutzung bei Neutronenstreuinstrumenten des JCNS
- Aufgabenstellung:
 - Implementierung eines TANGO-Servers zur Bedienung des Detektors mit NICOS
 - Entwicklung eines automatisierten Kalibrierungsalgorithmus
 - ⇒ Ziel: Inbetriebnahme des Detektors bei SAPHiR

INHALTSVERZEICHNIS

Einleitung

WLSF-Szintillationsdetektor

Jülich-Münchener Standard

Implementierung des Detektorservers

Kalibrierung des Detektors

Zusammenfassung und Ausblick

Aufbau des Detektors

 Lithiumfluorid-Zinksulfid-Szintillator als Detektionsfläche

Aufbau des Detektors

- Lithiumfluorid-Zinksulfid-Szintillator als Detektionsfläche
- Zwei übereinanderliegende, orthogonale WLSF-Ebenen

Aufbau des Detektors

- Lithiumfluorid-Zinksulfid-Szintillator als Detektionsfläche
- Zwei übereinanderliegende, orthogonale WLSF-Ebenen
- Verbindung beider Enden einer WLSF mit einem Kanal eines MaPMTs

Aufbau des Detektors

- Lithiumfluorid-Zinksulfid-Szintillator als Detektionsfläche
- Zwei übereinanderliegende, orthogonale WLSF-Ebenen
- Verbindung beider Enden einer WLSF mit einem Kanal eines MaPMTs
- Ausleseelektronik zur Verarbeitung der Daten

Detektion von Neutronen

• Absorption eines auftreffenden Neutrons im Szintillator

Detektion von Neutronen

- Absorption eines auftreffenden Neutrons im Szintillator
- Einfangen vom Szintillator emittierter Photonen in WLSF

Detektion von Neutronen

- Absorption eines auftreffenden Neutrons im Szintillator
- Einfangen vom Szintillator emittierter Photonen in WLSF
- Detektion austretender Photonen mit vergrößerter Wellenlänge im MaPMT

Detektion von Neutronen

- Absorption eines auftreffenden Neutrons im Szintillator
- Einfangen vom Szintillator emittierter Photonen in WLSF
- Detektion austretender Photonen mit vergrößerter Wellenlänge im MaPMT

• Erzeugung von Elektronen durch Absorption der Photonen in Photokathode

Detektion von Neutronen

- Absorption eines auftreffenden Neutrons im Szintillator
- Einfangen vom Szintillator emittierter Photonen in WLSF
- Detektion austretender Photonen mit vergrößerter Wellenlänge im MaPMT

- Erzeugung von Elektronen durch Absorption der Photonen in Photokathode
- Verstärkung des elektrischen Signals im MaPMT, das in Ausleseelektronik verarbeitet wird

Ausleseelektronik

 Fünf MaPMTs mit insgesamt 320 Kanälen (X: 192, Y: 128)

Ausleseelektronik

- Fünf MaPMTs mit insgesamt 320 Kanälen (X: 192, Y: 128)
- Verbindung der MaPMT-Ausgangskanäle mit 64 analogen MAROC-Eingängen

Ausleseelektronik

- Fünf MaPMTs mit insgesamt 320 Kanälen (X: 192, Y: 128)
- Verbindung der MaPMT-Ausgangskanäle mit 64 analogen MAROC-Eingängen
- Anschluss von fünf MAROC-Platinen über serielles Protokoll mit einem Konzentrator

Ausleseelektronik

- Fünf MaPMTs mit insgesamt 320 Kanälen (X: 192, Y: 128)
- Verbindung der MaPMT-Ausgangskanäle mit 64 analogen MAROC-Eingängen
- Anschluss von fünf MAROC-Platinen über serielles Protokoll mit einem Konzentrator

Optische Schnittstelle von Konzentrator- zu SIS/PSF1100-Platine

Ausleseelektronik

- Fünf MaPMTs mit insgesamt 320 Kanälen (X: 192, Y: 128)
- Verbindung der MaPMT-Ausgangskanäle mit 64 analogen MAROC-Eingängen
- Anschluss von fünf MAROC-Platinen über serielles Protokoll mit einem Konzentrator

- Optische Schnittstelle von Konzentrator- zu SIS/PSF1100-Platine
- Anschluss eines Rechners über PCI-Schnittstelle

Ausleseelektronik

- Fünf MaPMTs mit insgesamt 320 Kanälen (X: 192, Y: 128)
- Verbindung der MaPMT-Ausgangskanäle mit 64 analogen MAROC-Eingängen
- Anschluss von fünf MAROC-Platinen über serielles Protokoll mit einem Konzentrator

- Optische Schnittstelle von Konzentrator- zu SIS/PSF1100-Platine
- Anschluss eines Rechners über PCI-Schnittstelle
- Central Clock über Twisted-Pair zur zentralen Signalverteilung

Ausleseelektronik – MAROC-Platine

 MAROC3: Digitalisierung des Eingangssignals mithilfe von Vorverstärker, Diskriminator und ADC

Ausleseelektronik – MAROC-Platine

- MAROC3: Digitalisierung des Eingangssignals mithilfe von Vorverstärker, Diskriminator und ADC
- FPGA: Hinzufügen eines
 Zeitstempels

Ausleseelektronik – MAROC-Platine

- MAROC3: Digitalisierung des Eingangssignals mithilfe von Vorverstärker, Diskriminator und ADC
- FPGA: Hinzufügen eines
 Zeitstempels

Schreiben erhaltener Daten in FIFO-Speicher nach Kanalnummer sortiert

Ausleseelektronik – MAROC-Platine

- MAROC3: Digitalisierung des Eingangssignals mithilfe von Vorverstärker, Diskriminator und ADC
- FPGA: Hinzufügen eines
 Zeitstempels

- Schreiben erhaltener Daten in FIFO-Speicher nach Kanalnummer sortiert
- Autonomes Senden des FIFO-Inhalts über serielles Protokoll an Konzentrator

Ausleseelektronik – Konzentrator-Platine

 Sicherung der MAROC-Daten in Eingangs-FIFO

Ausleseelektronik – Konzentrator-Platine

- Sicherung der MAROC-Daten in Eingangs-FIFO
- Sortierung nach zeitlicher Rechenfolge im FPGA

Ausleseelektronik – Konzentrator-Platine

- Sicherung der MAROC-Daten in Eingangs-FIFO
- Sortierung nach zeitlicher
 Rechenfolge im FPGA
- Datenreduktion durch
 Koinzidenzalgorithmen im FPGA

Ausleseelektronik – Konzentrator-Platine

- Sicherung der MAROC-Daten in Eingangs-FIFO
- Sortierung nach zeitlicher
 Rechenfolge im FPGA
- Datenreduktion durch
 Koinzidenzalgorithmen im FPGA

 Übermittlung gesammelter Zeit- und Ortsinformationen an einen Rechner über optische Schnittstelle zur SIS/PSF1100-Platine

Ausleseelektronik - SIS/PSF1100-Platine

 PLX-Chip 9656 als Schnittstelle zwischen Rechner und Platinen durch Implementierung einer PCI-Schnittstelle

Ausleseelektronik – SIS/PSF1100-Platine

- PLX-Chip 9656 als Schnittstelle zwischen Rechner und Platinen durch Implementierung einer PCI-Schnittstelle
- Kommunikation mit Elektronik über PLX-Treiber und PLX-API

Ausleseelektronik – SIS/PSF1100-Platine

- PLX-Chip 9656 als Schnittstelle zwischen Rechner und Platinen durch Implementierung einer PCI-Schnittstelle
- Kommunikation mit Elektronik über PLX-Treiber und PLX-API

 Ansteuerung des PLX-Chips über Spartan-6 FPGA, der das SIS-Protokoll implementiert

INHALTSVERZEICHNIS

Einleitung

WLSF-Szintillationsdetektor

Jülich-Münchener Standard

Implementierung des Detektorservers

Kalibrierung des Detektors

Zusammenfassung und Ausblick

Motivation

- Vereinheitlichung aller Kontroll- und Datenerfassungssysteme f
 ür Neutroneninstrumente des JCNS
 - ⇒ Verwendung des TANGO-Kontrollsystems und Entangle-Frameworks f
 ür die Server
 - ⇒ Zugriff auf TANGO-Schnittstellen mit Steuerungssoftware NICOS

Motivation

- Vereinheitlichung aller Kontroll- und Datenerfassungssysteme f
 ür Neutroneninstrumente des JCNS
 - ⇒ Verwendung des TANGO-Kontrollsystems und Entangle-Frameworks f
 ür die Server
 - ⇒ Zugriff auf TANGO-Schnittstellen mit Steuerungssoftware NICOS
- Einsatz des WLSF-Szintillastionsdetektors bei SAPHiR und möglicherweise auch anderen JCNS-Instrumenten
 - ⇒ Ziel: Implementierung der Detektorsteuerung in TANGO zur späteren Nutzung mit NICOS

Struktur der Kontrollsysteme des JCNS

16. April 2018

TANGO-System und Entangle-Framework

TANGO-Kontrollsystem

- Quelloffenes Projekt mehrerer Forschungsinstitute (TANGO Consortium)
- Objektorientierte Kontrollsystem
- Repräsentation eines Geräts durch mindestens ein Objekt
- Definition von Properties, Attribute und Kommandos
- Konfigurationsdaten in mySQL-Datenbank
- Client-Server-Kommunikation mittels CORBA und ZeroMQ

TANGO-System und Entangle-Framework

TANGO-Kontrollsystem

- Quelloffenes Projekt mehrerer Forschungsinstitute (TANGO Consortium)
- Objektorientierte Kontrollsystem
- Repräsentation eines Geräts durch mindestens ein Objekt
- Definition von Properties, Attribute und Kommandos
- Konfigurationsdaten in mySQL-Datenbank
- Client-Server-Kommunikation mittels CORBA und ZeroMQ

Entangle-Framework

- Basisklassen für gängige Geräte
- Mehrere Klassen pro Gerät anstelle von neuen Schnittstellen

INHALTSVERZEICHNIS

Einleitung

WLSF-Szintillationsdetektor

Jülich-Münchener Standard

Implementierung des Detektorservers

Kalibrierung des Detektors

Zusammenfassung und Ausblick

IMPLEMENTIERUNG DES DETEKTORSERVERS

Softwarestruktur (1)

Modellierung der Hardware

- Abstraktion wesentlicher
 Funktionen in PlxDevice
- Gegenseitiger Zugriff über private Attribute
- Kapselung durch Singletonklasse Worker
- Worker: Kontrolle des Zugriffs auf Hardware, u. a. über PLX-Schnittstellen

IMPLEMENTIERUNG DES DETEKTORSERVERS

Softwarestruktur (2)

2 Threadklassen

- Idee von PlxDeviceThread: Modularisierung, einfacher Datenaustausch, Existenz nur bei Notwendigkeit
- DaqThread: Auslese und Verarbeitung der Rohdaten
- SaveDataThread: kontinuierliches Sichern der Rohdaten, nach Messende auch 1D- und 2D-Daten
- UpdateThread: Überwachen der Bedingung zum Beenden einer Messung

IMPLEMENTIERUNG DES DETEKTORSERVERS

Softwarestruktur (3)

3 TANGO-Klassen

- MAROCDetector mit Entangle-Klassenelementen: Prepare(), Start(), Stop(), State(), value, active, preselection
 - ⇒ Einbindung in NICOS ohne zusätzliche Klassen möglich
- MAROCDebug: daqTime, timeActive, dataPath, lastFilename
- Gemeinsamer Zugriff auf Singletonklasse Worker
 - ⇒ Sicherer Hardwarezugriff durch Kapselung und Mutex

INHALTSVERZEICHNIS

Einleitung

WLSF-Szintillationsdetektor

Jülich-Münchener Standard

Implementierung des Detektorservers

Kalibrierung des Detektors

Zusammenfassung und Ausblick

Motivation

- Trennung von Rauschen und durch Neutronen erzeugter Signale
- Homogenisierung der Nachweiswahrscheinlichkeit

Motivation

- Trennung von Rauschen und durch Neutronen erzeugter Signale
- Homogenisierung der Nachweiswahrscheinlichkeit
- Ziel: Optimierung von
 - 1 Diskrimatorschwelle,
 - 2 Vorverstärkung und
 - 3 Hochspannung

Einstellung der Diskriminatorschwelle – Erste Näherung

Einstellung der Diskriminatorschwelle – Erste Näherung

- Schwelle zu niedrig: Keine oder nur sehr wenige erhaltene Daten
- Sukzessives Erhöhen der Schwelle bis Single-Photonenpuls erkennbar

Einstellung der Diskriminatorschwelle – Mögliches Optimum

- Approximation einer Gaussverteilung an Single-Photonenpuls
- Vergleich von Werten der Dichtefunktion mit gemessenen Werten an Quantilen der Normalverteilung
- Ergebnis: Ab 0, 2-Quantil kaum noch Rauschen
- Jedoch: Praktische Restriktionen durch die Elektronik bei der Umsetzung

Einstellung der Vorverstärkung – Vorgehen

- Angleichung der Pulshöhenspektren, sodass Maxima in demselben Spannungsbereich liegen
 - ⇒ Gleiche Auswirkung der Schwelle auf jedem Kanal

Einstellung der Vorverstärkung – Vorgehen

- Angleichung der Pulshöhenspektren, sodass Maxima in demselben Spannungsbereich liegen
 - ⇒ Gleiche Auswirkung der Schwelle auf jedem Kanal

Überlegungen:

- Bildung von Mittelwert und relativer Abweichung
- Berechnung des Einflusses von Vorverstärkung auf erfasste Spannung
- Anpassung der Vorverstärkung mithilfe der relativen Abweichung
- Kontrollwerte: durchschnittliche und maximale, relative Abweichung

Einstellung der Vorverstärkung – Vorgehen

- Angleichung der Pulshöhenspektren, sodass Maxima in demselben Spannungsbereich liegen
 - ⇒ Gleiche Auswirkung der Schwelle auf jedem Kanal
- Überlegungen:
 - Bildung von Mittelwert und relativer Abweichung
 - Berechnung des Einflusses von Vorverstärkung auf erfasste Spannung
 - Anpassung der Vorverstärkung mithilfe der relativen Abweichung
 - Kontrollwerte: durchschnittliche und maximale, relative Abweichung
- Ansatz: Aktuelle Vorverstärkung entspricht gewünschter Vorverstärkung unter Hinzunahme der relativen Abweichung

$$\Rightarrow gain(c) = gain'(c) + f(c) \cdot gain'(c)$$

Einstellung der Vorverstärkung – Berechnungsvorschrift

$$\begin{aligned} gain(c) &= (1 + f(c) \cdot scaling) \cdot gain'(c) \\ \iff gain'(c) &= \begin{cases} \frac{gain(c)}{1 + f(c) \cdot scaling}, & \text{für } f(c) \neq -\frac{1}{scaling} \\ gain_{max}, & \text{für } f(c) = -\frac{1}{scaling} \end{cases} \end{aligned}$$

mit scaling = 0, 25 und $gain_{max} = 255$

c : Kanalnummer einer MAROC-Platine

f(c) : relative Abweichung von maxADC(c) zu \overline{maxADC} gain(c) : aktuelle Verstärkung von cgain'(c) : neu berechnete Verstärkung von c

Ergebnis: kontinuerliche Verbesserung

 $\Rightarrow\,$ nach fünf Iterationen durchschnittliche Abweichung unter $3.5\,\%$ und max. Abweichung um ein Drittel auf ca. 20 % gesunken

INHALTSVERZEICHNIS

Einleitung

- WLSF-Szintillationsdetektor
- Jülich-Münchener Standard
- Implementierung des Detektorservers
- Kalibrierung des Detektors
- Zusammenfassung und Ausblick

Ergebnisse

Entwicklung einer vielseitig einsetzbaren Schnittstelle zur Steuerung des Detektors

Ergebnisse

- Entwicklung einer vielseitig einsetzbaren Schnittstelle zur Steuerung des Detektors
- Implementierung eines TANGO-Servers unter Berücksichtigung des Entangle-Frameworks

Ergebnisse

- Entwicklung einer vielseitig einsetzbaren Schnittstelle zur Steuerung des Detektors
- Implementierung eines TANGO-Servers unter Berücksichtigung des Entangle-Frameworks
- 3 Entwicklung eines automatisierten Kalibrierungsalgorithmus

Ergebnisse

- Entwicklung einer vielseitig einsetzbaren Schnittstelle zur Steuerung des Detektors
- Implementierung eines TANGO-Servers unter Berücksichtigung des Entangle-Frameworks
- 3 Entwicklung eines automatisierten Kalibrierungsalgorithmus

Weitere mögliche Projekte

Ergebnisse

- Entwicklung einer vielseitig einsetzbaren Schnittstelle zur Steuerung des Detektors
- Implementierung eines TANGO-Servers unter Berücksichtigung des Entangle-Frameworks
- 3 Entwicklung eines automatisierten Kalibrierungsalgorithmus

Weitere mögliche Projekte

Implementierung des TOF-Modus

Ergebnisse

- Entwicklung einer vielseitig einsetzbaren Schnittstelle zur Steuerung des Detektors
- Implementierung eines TANGO-Servers unter Berücksichtigung des Entangle-Frameworks
- 3 Entwicklung eines automatisierten Kalibrierungsalgorithmus

Weitere mögliche Projekte

- 1 Implementierung des TOF-Modus
- 2 Performanceuntersuchungen

Vielen Dank für Ihre Aufmerksamkeit!

EXPERIMENTSYSTEM SAPHIR

- <u>Six Anvil Press for High Pressure Radiography</u> and Diffraction
- Flugzeitneutronenbeugung (TOF) und Neutronenradiographie an polykristallinen und flüssigen Proben unter extremen Druck- und Temperaturbedingungen
- Nutzung thermischer Neutronen
- Herzstück: Sechsstempelpresse mit Presskraft von bis zu 23.5 MN
- Beugungs- und Radiographiedetektoren

Hardwarezugriff

- Abbilden physikalischer Speicherbereiche in virtuellen Adressbereich
- Setzen von Zeigern auf Startadressen der Register
 - ⇒ Änderung der Registereinträge durch Modifikation der Datenstrukturen
- Weitere API-Funktionen: Herstellen und Trennen von Verbindungen, DMA-Verwaltung

Fehlerbehandlung

- Fehlercodes in unterer Programmierebene
- Ausnahmen in Schnittstellen zu TANGO
- Vier Logging-Modi: Error, Warning, Info, Debug

 Tango warning @ 09.08.2017 13:59:29.705066

 Error reason = [MAROC 2] Error while comparing written and read serial data arrays

 Device [0]
 : Register [0x0] changed: WR 0x511F45F3 -> RD 0x510EC5F3

 Origin
 : PLX_STATUS MAROC_ns::Maroc::_compareWRRegisterArrayWithLink(U32, bool)

Tango error @ 09.08.2017 14:18:53.514733						
Exception catched in MAROCDetector	: [Worker] Error while trying to start data acquisisiton					
Error reason	= Prepare command was not executed beforehand.					
Result	: Detector is now in ALARM state.					
<u>O</u> rigin	: virtual void MAROCDetector_ns::MAROCDetector::start()					

Konfigurationsdateien

- Größtenteils unveränderliche Parameter
 - Koinzidenzparameter der Konzentratoren
 - MAROC3-Konfiguration
 - ⇒ Separate Schnittstellen nicht sinnvoll
- Lösung: INI-Dateien für alle Platinen
 - INI-Format: Sektionen und Schlüssel-Wert-Paare
- LoadSettings() und SaveSettings() als TANGO-Kommandos

Statusverwaltung

Einstellung der Diskriminatorschwelle – Derzeitiges Optimum

 Setzen der Schwelle auf 0, 2-Quantil nicht möglich

Vermutung:

Verzögerungszeit im FPGA bei hoher Schwelle zu kurz

- Alternative: Erhöhen der Schwelle solange sinnvolle Daten ausgelesen werden
- Prüfung aller Kanäle mit ermittelter Schwelle

Einstellung der Vorverstärkung – Ergebnisse

Iteration	Gemessene Impulse pro Kanal	Standard- abweichung	Ø relative Abweichung	betragsmäßig größte, relative Abweichung
1	1000	199	4.96 %	33.9 %
2	2000	184	4.49 %	19.4%
3	3000	158	3.86 %	23.8 %
4	4000	150	3.66 %	21.7%
5	5000	142	3.47 %	20.4 %

Einstellung der Hochspannung

- Verfahren identisch zur Vorverstärkung
- **Unterschiede:** Berechnung von neuem Skalierungsfaktor, anderer Wertebereich
- Problem: Änderung der Hochspannung anscheinend nicht korrekt in Elektronik umgesetzt
 - ⇒ Tests lediglich mit zwei Platinen möglich
- Ergebnis: Differenz zwischen Maxima der Pulshöhenspektren bereits sehr gering (unter 2.5 %)
 - ⇒ Bei derzeitigem Entwicklungsstand keine weiteren Tests zur Verbesserung der Hochspannung möglich

Angleichung der Nachweiswahrscheinlichkeit – Überlegungen

- Motivation: Ausgleich der Schwankungen in den Photokathoden der MaPMTs bezüglich der Nachweiswahrscheinlichkeit eines Photons
 - Unterschiedliche Sensitivität der Photokathoden
 - ⇒ Unterschiedliche Emissionswahrscheinlichkeit für ein Elektron pro Photon

Idee:

- Vermessen aller MaPMT-Kanäle mit speziell gepulster LED
- Vergleich der detektierten Impulse pro Kanal

$$h(m,c) \cdot f(m,c) \stackrel{!}{=} \frac{1}{M \cdot 64}$$
$$\iff f(m,c) = \frac{1}{h(m,c) \cdot M \cdot 64}$$

-

$$\label{eq:mit_h} \min h(m,c) = \frac{counts(m,c)}{\sum\limits_{i=1}^{M}\sum\limits_{j=1}^{64} counts(i,j)}$$

- $M: \ensuremath{\mathsf{Anzahl}}\xspace$ vorhandener MaPMTs
- h(m,c) : Anteil detektierter Photonen
- $f(\boldsymbol{m},\boldsymbol{c}):$ Faktor zur Anpassung von $h(\boldsymbol{m},\boldsymbol{c})$

