

Unravelling the mysteries of strong interaction with supercomputers

Marina Krstić Marinković

Abschlusskolloquium des GRK 1504

2018, March 9th

2006 - Summer Student Program @ DESY, Zeuthen

• 2008 - 2009

2009 - 2018 RADUIERTEN KOLLEG Masse-Spektrum-Symmetrie

• 2009 - 2012

· 2012 - 2014

• 2014 - 2017

Standard model of particle physics

- Interactions (not) present in SM:
 - ➡ Electromagnetic
 - ➡ Weak
 - Strong
 - ➡ Yukawa
 - Gravity
- Is there some new physics beyond standard model (SM) ?
 - dark matter
 - → dark energy
 - hierarchy problem
 - strong CP-problem
 - ➡ matter/anti-matter asymmetry...

Illustration: [http://cdn2-b.examiner.com]

Illustration: [http://www.speed-light.info]

Standard model of particle physics

- Interactions (not) present in SM
 - Electromagnetic
 - ➡ Weak
 - ➡ Strong
 - ➡ Yukawa
 - Gravity
- Is there some new physics beyond standard model (SM) ?
 - dark matter
 - → dark energy
 - hierarchy problem
 - strong CP-problem
 - ➡ matter/anti-matter asymmetry...

Illustration: [http://cdn2-b.examiner.com]

Illustration: [http://www.speed-light.info]

Looking for new physics beyond SM

use experimental results and <u>theory predictions</u> to constrain the SM and figure out if there is a discrepancy indicating **new physics (NP)**

Theorist's job:

- predicting the relevant input for the indirect searches of NP
- creating a model that accommodates the potential discoveries of NP

Looking for new physics beyond SM

use experimental results and <u>theory predictions</u> to constrain the SM and figure out if there is a discrepancy indicating **new physics (NP)**

Theorist's job:

- predicting the relevant input for the indirect searches of NP
- creating a model that accommodates the potential discoveries of NP

Looking for new physics beyond SM

use experimental results and <u>theory predictions</u> to constrain the SM and figure out if there is a discrepancy indicating **new physics (NP)**

Theorist's job:

- predicting the relevant input for the indirect searches of NP
- creating a model that accommodates the potential discoveries of NP

The quest for New Physics beyond SM

- Searches for rare processes and for tiny deviations from Standard model expectations
- Heavy flavour physics
 - Experimental values (BaBar, Belle, LHCb)

 $R(D) = \frac{\mathcal{B}(B \to D\tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to Dl \overline{\nu}_{l})} = 0.44 \pm 0.07$

 $R(D)_{SM} = 0.297 \pm 0.017$ $R(D^*)_{SM} = 0.252 \pm 0.003$

New intensity frontier experiments planned to crosscheck these measurements (e.g. Belle II)

 $R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to D^* l \overline{\nu}_{l})} = 0.33 \pm 0.03$

The quest for New Physics beyond SM

- Searches for rare processes and for tiny deviations from Standard model expectations
- **Heavy flavour physics**
 - Experimental values (BaBar, Belle, LHCb)

 $R(D) = \frac{\mathcal{B}(B \to D\tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to Dl \overline{\nu}_{l})} = 0.44 \pm 0.07$

SM prediction:

 $R(D)_{SM} = 0.297 \pm 0.017$ $R(D^*)_{SM} = 0.252 \pm 0.003$

New intensity frontier experiments planned to crosscheck these measurements (e.g. Belle II)

 $R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \overline{\nu}_{\tau})}{\mathcal{B}(B \to D^* l \overline{\nu}_{l})} = 0.33 \pm 0.03$

The magnetic moment of the lepton: a_l

$$\begin{array}{l}
\overset{\mathsf{Y}(q)}{\underbrace{\qquad}} & \underbrace{\qquad} = (-ie)\bar{u}(p') \left[\gamma^{\mu}F_{E}(q^{2}) + \frac{\sigma^{\mu\nu}q_{\nu}}{2m_{l}}F_{M}(q^{2})\right]u(p) \\ \\
q = p' - p; \quad q^{2} = 0: \quad F_{E}(0) = 1, F_{M}(0) = a_{l} = \frac{g_{l}-2}{2}, l = e, \mu, \tau
\end{array}$$

➡ At what energies does the Standard Model stop to describe nature?

EXPERIMENT:
$$a_{\mu}^{exp} = 11659208.0(6.3) \times 10^{-10}$$
 (0.54ppm) [BNL E821, 2006-2008]
THEORY: $a_{\mu}^{th} = 11659185.5(5.9) \times 10^{-10}$ (0.51ppm) [Benayoun et. al, arxiv:1507.02943]

TENSION: 2.9-4.5 σ

a_{μ} from the experiment: FNAL E989

- $a_{\mu}^{exp} = 11659208.0(6.3) \times 10^{-10}(0.54 \text{ppm})$ [BNL, 2006-2008]
- New experiments (J-PARC, FNAL E989) expected to perform 4× more precise measurement
- Improved precision of the theoretical estimates with dominating uncertainty required

a_{μ} from the experiment [BNL -> FNAL] [http://www.g-2.bnl.gov]

• Measured using polarised muons circulating in E and B fields

$$\vec{\omega_a} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

• At a momentum where $\beta \times E$ terms cancel ('magic momentum', $\gamma \approx 29.3$), the difference between spin and cyclotron frequencies:

a_{μ} from the experiment [BNL -> FNAL] [http://www.g-2.bnl.gov]

• Measured using polarised muons circulating in E and B fields

$$\vec{\omega_a} = -\frac{e}{m} \begin{bmatrix} a_\mu \vec{B} - (a_\mu - \gamma^2 - 1) \frac{\vec{\beta} \times \vec{E}}{c} \end{bmatrix}$$

• At a momentum where $\beta \times E$ terms cancel ('magic momentum', $\gamma \approx 29.3$), the difference between spin and cyclotron frequencies:

$$\omega_a = -\frac{e}{m}a_\mu B$$

a_{μ} from the experiment: J-PARC E34

$$\vec{\omega_a} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \vec{\beta} \times \vec{E} + \frac{\eta_\mu}{2} \left(\beta \times \vec{B} + \frac{E}{c} \right) \right]$$

Ultra slow muon beam: E-term cancels again

T.Yamazaki (@KEK 2018 g-2 WS): muon RF acceleration for the first time last month!

Intro HLbL: gauge & crossing HLbL dispersive Conclusions $a_{\mu} = (g-2)_{\mu}/2$ Approaches to HLbL

Status of $(g - 2)_{\mu}$, experiment vs SM

theory	116 591 855.	59.
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NLO) [Hagiwara et al. 11]	-98 .	1.
HVP (LO) [Hagiwara et al. 11]	6 949.	43.
electroweak, total	153.6	1.0
QED total	116 584 718.95	0.04
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^2)$	413217.63	0.01
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
experiment	116 592 089.	63.
	a _μ [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]

Schwinger 1948

$$a_{\mu}^{QED(1)} = \left(\frac{\alpha}{2\pi}\right)$$

- Schwinger's result : g_e=2.00232
- Foley's experimental result: g_e=2.00238(10)
- First great success of QFT!

of $(g-2)_{\mu}$, experiment vs SM			
	a_{μ} [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]	
experiment	116 592 089.	63.	
$QED\ \mathcal{O}(lpha)$	116140973.21	0.03	
QED $\mathcal{O}(\alpha^2)$	413217.63	0.01	
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00	
QED $\mathcal{O}(\alpha^4)$	381.01	0.02	
QED $\mathcal{O}(\alpha^5)$	5.09	0.01	
QED total	116 584 718.95	0.04	
electroweak, total	153.6	1.0	
HVP (LO) [Hagiwara et al. 11]	6949.	43.	
HVP (NLO) [Hagiwara et al. 11]	-98 .	1.	
HLbL [Jegerlehner-Nyffeler 09]	116.	40.	
IVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1	
bL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.	
theory	116 591 855.	59.	

auge & crossing HLbL dispersive Conclusions $a_{\mu}=(g-2)_{\mu}/2$ Status of $(g-2)_{\mu}$ Approaches to HLbL

Kinoshita et al. 2012

Universal part: checked by S. Laporta [arXiv:1704.06996] (computed up to 1100! digits)

• BNL E982 experiment result and different th. contributions:

Intro HLbL: gauge & crossing HLbL dispersive Conclusions $a_{\mu} = (g-2)_{\mu}/2$ Approaches to HLbL Status of $(g-2)_{\mu}$, experiment vs SM

	<mark>a</mark> μ[10 ⁻¹¹] $\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116 140 973.2	.1 0.03
QED $\mathcal{O}(\alpha^2)$	413217.6	3 0.01
QED $\mathcal{O}(\alpha^3)$	30 141.9	0 0.00
QED $\mathcal{O}(\alpha^4)$	381.0	1 0.02
QED $\mathcal{O}(\alpha^5)$	5.0	9 0.01
QED total	116 584 718.9	5 0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6 949.	43.
HVP (NLO) [Hagiwara et al. 11]	-98 .	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinha	auser 14] 12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera	a, Stoffer 14] 3.	2.
theory	116 591 855.	59.
, Hoterichter, Nytteler, Passera, Stotter 14]	ວ.	۷.
theory 1	16 591 855.	59.
	experimentQED $\mathcal{O}(\alpha)$ QED $\mathcal{O}(\alpha^2)$ QED $\mathcal{O}(\alpha^3)$ QED $\mathcal{O}(\alpha^4)$ QED $\mathcal{O}(\alpha^5)$ QED totalelectroweak, totalHVP (LO) [Hagiwara et al. 11] HVP (NLO) [Hagiwara et al. 11] HLbL [Jegerlehner-Nyffeler 09]HVP (NNLO) [Kurz, Liu, Marquard, Steinhar HLbL (NLO) [GC, Hoferichter, Nyffeler, PasseratheoryC, Hoterichter, Nyffeler, Passera, Stotter 14]	$a_{\mu} [10^{-11}]$ experiment 116 592 089. QED $\mathcal{O}(\alpha)$ 116 140 973.2 QED $\mathcal{O}(\alpha^2)$ 413 217.6 QED $\mathcal{O}(\alpha^3)$ 30 141.9 QED $\mathcal{O}(\alpha^4)$ 381.0 QED $\mathcal{O}(\alpha^5)$ 5.0 QED total 116 584 718.9 electroweak, total 153.6 HVP (LO) [Hagiwara et al. 11] 6949. HVP (NLO) [Hagiwara et al. 11] -98. HLbL [Jegerlehner-Nyffeler 09] 116. HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 12.4 HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 3. theory 116 591 855. \mathcal{L} , Hoterichter, Nyffeler, Passera, Stoffer 14] \mathcal{S} .

Czarnecki, Marciano, Vainshtein 2003 Heinemeyer, Stoeckinger, Weiglein 2004 Gribouk, Czarnecki 2005

• BNL E982 experiment result and different th. contributions:

 $a_{\mu} = (g-2)_{\mu}/2$

	<mark>a</mark> μ[10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$	$a^{exp}_{p} - a^{st} \sim 3 \widetilde{\sigma}^{s\sigma} 3\sigma$
experiment	116 592 089.	63.	
QED $\mathcal{O}(\alpha)$ QED $\mathcal{O}(\alpha^2)$ QED $\mathcal{O}(\alpha^3)$ QED $\mathcal{O}(\alpha^4)$ QED $\mathcal{O}(\alpha^5)$	116 140 973.21 413 217.63 30 141.90 381.01 5.09	0.03 0.01 0.00 0.02 0.01	s Cons
electroweak, total	110 564 7 18.95	1.0	
HVP (LO) [Hagiwara et al. 11] HVP (NLO) [Hagiwara et al. 11]	6 949. _98	43.	Hadronic Vacuum Polarisation
HLbL [Jegerlehner-Nyffeler 09] HVP (NNLO) [Kurz Liu Marguard Steinbauser 14]	116. 12.4	40.	ζ ,
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.	
theory	116 591 855.	59.	

Hadronic Light by Light contribution

• BNL E982 experiment result and different th. contributions:

 $a_{\mu} = (g-2)_{\mu}/2$

	<u>a</u> μ[10 ^{−11}]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6949.	43.
HVP (NLO) [Hagiwara et al. 11]	-98 .	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116 591 855.	59.

• BNL E982 experiment result and different th. contributions:

 $a_{\mu} = (g-2)_{\mu}/2$

	<mark>a</mark> μ[10 ^{−11}]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
QED $\mathcal{O}(\alpha)$	116140973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
$QED\ \mathcal{O}(lpha^5)$	5.09	0.01
QED total	116 584 718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6949.	43.
HVP (NLO) [Hagiwara et al. 11]	-98 .	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116 591 855.	59.

Lattice QCD (+QED) provide a way to compute these contributions in a model-independent way

From continuum to lattice QCD

$$S_{QCD}[\psi,\bar{\psi},A] = S_G + S_F$$

$$= \frac{1}{2g} F_{\mu\nu}F_{\mu\nu} + \int d^4x \ \bar{\psi}(x) \left[\gamma_{\mu} \left(\partial_{\mu} + iA_{\mu}(x)\right) + m\right] \psi(x)$$

$$\begin{array}{rcl} x & \longrightarrow & n = (n_1, n_2, n_3, n_4) \ n_1 = 0, \dots, N-1 \\ \psi(x), \bar{\psi}(x) & \longrightarrow & \psi(n), \bar{\psi}(n) \\ \int d^4 x \dots & \longrightarrow & a^4 \sum_n \dots \\ \partial_\mu \ \psi(x) & \longrightarrow & \frac{\psi(n+\hat{\mu}) - \psi(n-\hat{\mu})}{2a} + \mathcal{O}(a^2) \end{array}$$

Non-perturbative QCD

 $\mathsf{Gluons} \sim U_\mu(x) = e^{iagA_\mu}$

Non - perturbative computation of a_{μ}

1. Generate ensembles of field configurations using Monte Carlo

2. Average over a set of configurations:

- Compute correlation function of fields, extract Euclidean matrix elements or amplitude
- Computational cost dominated by quarks: inverses of large, sparse matrix
- 3. Extrapolate to continuum, infinite volume, physical quark masses (now directly accessible)

Non - perturbative computation of a_{μ}

Lattice **QCD** computation

• large computer resources: **several TFlop years!**

Non - perturbative computation of a_{μ}

1. Generate ensembles of field configurations using *Monte Carlo*

2. Average over a set of configurations:

- Compute correlation function of fields, extract Euclidean matrix elements or amplitude
- Computational cost dominated by quarks: inverses of large, sparse matrix

3. Extrapolate to continuum, infinite volume, physical quark masses (now directly accessible)

Berlin Wall

[~start of my PhD]

Berlin Wall update

[Talk by A. Ukawa @CERN 2010]

Highlights of modern lattice **QCD** computations

[Aoki et. al 2008]

[Bruno et. al 2017]

[Hohne et. al 2009]

Summary: HVP from the lattice/R-ratios

so far: $m_u = m_d$ and $a_{em} = 0$

Summary & Outlook

- Obtain predictions for new experiments and help verify/falsify extensions of the Standard Model
- Muon anomalous magnetic moment good quantity for constraining new physics
- **Experimental** precision 0.54 p.p.m. —> **improvement 4x** expected (Fermilab, J-PARC, CERN?)
- Lattice QCD needed to tackle the non-perturbative regime of QCD
- Lattice FT gives an independent theory prediction of hadronic contributions
- Large computing power and advanced algorithms needed

Thanks! Questions??

Next steps & new approaches:

- Including electromagnetic interaction: Lattice QCD+QED
- ➡ Predictions for coming experiments: LHC(b), NA62, Fermilab g-2 (E981), RHIC, FAIR, ...
- New experiments: MUonE @ CERN
- New algorithmic advances and new supercomputers for more extensive calculations

RC* Collaboration <u>http://rcstar.web.cern.ch/</u>

Rome II - University of Rome Tor Vergata

- N. Tantalo
- G.M. de Divitiis

CSIC, Santander

Isabel Campos

<u>CP3 - University of Southern Denmark</u>

• Martin Hansen

CERN

- Patrick Fritzsch
- Agostino Patella

Trinity College Dublin

- Alberto Ramos
- Marina Krstic Marinkovic

t