Status of CMS

Rainer Mankel

for the DESY CMS Group

67. PRC Meeting

5-May-2009

Some Major Milestones in CMS Schedule (as of early April)

- Main activities:
 - High Level Trigger, Data Quality Monitoring, Computing, Tracker Alignment, CASTOR Calorimeter, Beam Condition Monitor, Physics
- Group structure (FTE):
 - 14 staff physicists, 9+3^(YIG*) PostDocs, 8+3^(YIG*) PhD students
 - 3 Helmholtz Young Investigator Groups (YIG)
 - * already including the two YIGs just starting their work
 - Technical help: engineers & technicians, workshops
- This report focuses on activities in which DESY is involved

- Coordinating responsibilities within CMS:
 - Deputy Technical Coordinator (L1)
 - Computing Coordinator (L1)
 - DQM Convener (L2)
 - Alignment/Calib. Convener (L2)
 - CASTOR Cal. Project Manager
 - Grid SW Deployment Coordinator

Technical Coordination & Detectors

Technical Coordination Highlight: Installation of the Preshower

- Preshower endcaps assembled a four "Dee's"
 - delicate operation very close to beam pipe
 - both ES+ and ES- installed and commissioned by Easter
- Other important installations campaigns: refurbishing/upgrade of pixel detector cooling, revision & commissioning of tracker cooling plant

Beam Condition Monitor

- BCM1F: two arrays of four diamond sensors located outside of pixel tracker endcaps
 - spin-off from ILC FCAL R&D
 - also synergy with FLASH photon source
- After opening the detector in early 2009, the sensors have been reinstalled and tested
 - re-installation completed 2 days after Easter
 - analysis & comparison with last year's data is ongoing
 - system is fully operational

CASTOR Calorimeter

- CASTOR had been quickly & successfully installed in Sep 2008, but then suffered from unexpectedly high magnetic stray field in the CMS forward region
 - induced movements of CASTOR & its support close to the beam pipe → removed
- In the mean time, more detailed field measurements:
 - measured (max): 1500 Gauss
 - original simulation: 10 Gauss
- Foreseen dynode-type PMT cannot be used within this field
- → Switch to fine-mesh PMTs (\rightarrow 1 Tesla)
 - equip CASTOR using 1/5 of the PMTs from H1 backward calorimeter (SpaCal) for initial data taking (2009/10)
 - change inclination of PMT tubes to compensate for B field angle
 - → 45° → 30° with respect to beam pipe
 - consider radiation-hard version of finemesh PMT for long-term running

CASTOR (cont'd)

- CMS Technical Coordination has reviewed & approved modifications to CASTOR design
- Both CASTOR halves assembled with radiation-hard quartz & tungsten plates
- Test beam measurements for calibration of new setup will be performed in May
- Installation foreseen in June 2009
 - very challenging schedule

HLT, Alignment & DQM

High Level Trigger Supervisor (HLTS)

- HLT Supervisor (HLTS)
 - Run Control and configuration of Filter Units (FUs), rate monitoring
 - configuration database and browser, online book keeping of HLT configurations
 - extensively used for cosmic runs
 - essential for offline production applications
- Refactored version has been deployed in spring 2008 & used during extended cosmic running
- Recent development: integration of L1 scalars
 - needed to control data-taking rate with LHC collisions
 - current status: test setup in place on pre-series cluster
 - full-scale integration test of L1 changes will proceed soon

Long Cosmics Run with Magnetic Field: CRAFT

- Ran 4 weeks continuously from 13-Oct to 11-Nov
 - 19 days with B=3.8T
- 370M cosmic events collected in total
- 290M with B=3.8T and with strip tracker and DT in readout
 - 194M with all components in
- 1/3 of DQM shifts at DESY CMS centre

Alignment & Calibration in Cosmics Run (CRAFT)

- CRAFT cosmics run has been instrumental & exceedingly powerful for commissioning alignment & calibration
 - first large cosmics data sample with magnetic field on
 - momentum cuts
 - rigorous multiple scattering treatment
 - first opportunity for serious pixel tracker alignment
- Successfully commissioned & performed a large range of our alignment & calibration workflows with real data
 - comprehensive set of alignment & calibration constants
 - validation & sign-off procedures in place
 - routinely operation of calibration & reprocessing cycles
 - updated alignment/calibration to be used for startup of collisions

	CRAFT data taking	Alignment & Calibration	Rele	ease validation (22 and 1 st Reprocessing	X)	Alignment & Calibration	2 nd Reprocessing		➡	Workshop on Cosmic Ray Analysis
October November			December Ja		nuary	February			(March)	

Alignment & Calibration Workflow in CRAFT

Tracker Alignment with Cosmics Data

- Based on HIP and MillePede-II alignment algorithms
- Continuous improvement of methodology
 - synchronous update of Lorentz angle calibration & alignment constants essential
- → Steady improvement of alignment quality
 from unaligned → CRUZET (cosmics at 0T) → CRAFT alignment

Medians of residual distributions for Tracker Inner and Outer Barrel

Data Quality Monitoring (DQM)

- Coherent Data Quality Monitoring across CMS:
 - online DQM (real time)
 - prompt Reconstruction (Tier-0)
 - reprocessings (Tier-1 and 2)
- Data Certification:
 - 24/7 operation by central DQM shifts
 - weekly sign-off (confirmation of results by experts)
- Progress in 2008:
 - offline DQM has been fully implemented
 - routine production of DQM results during reconstruction
 - regular data certification cycle (signoff) established

CMS Run Registry: Good Run Lists based on certification of hardware (detector) and software (reconstruction)

i mari	alleten S	right Salest	Davies	-	1 841 9	fur Reporty	Date Vie	++-285													
ñet.	State:	Sales.	. Bartel		Evenia.	844.14	BTHM	Stag Print	Curvent .	080	.85	EDR.	HAL	.016	PPC.	50AL	.967	196	EGAN	467	.962
-	they him	ONLINE	3004.11.0	e +1 :	3,216,478	+03	0.01882		Ret with a compt	0	0			9			9	9			
ier.	They Alim.	OFFLINE	215.11.20	8.10	34.015	178	8.62007	252 +11	CSC and D7 ball	9	.0.		10.4			0					
672	Teglin	OFTLINE	3008.11.24	4.08	10,011,052	24,894	0.0-1862	100-38	Veyng magnetic	-01	12.4	9	21		10.	Q.	9	0			
884	Artime Talk	OTTUNE	208.11.0	636	14.387.171	16.308	10.002	Darber 8		10	10		1.1	Q.			Q.	Q.			
	Andrew Tiple	OFFLINE	2014.11.24	4.26	16,527,281	18,735	101862	Anaber 1	Magnet all very	4.1	44	-0.	44		- 64	α.	۵.	0.			
nif.	Artime Tok	OTTUNE	2006.11.20	8.24.	11,006.103	10.001	001982		Magnel certinue		100	2	10.0	0	0	0	9	0			
636	Andrew York	OFTLINE	2018.11.04	6.21	76.574.286	25.758	2.0411	\$7 and of	High landsmittig	-12	41	-4		4	4						
622	Governi Organ	OFFLINE	2004 11 0	6.21	127,404,52	14215	1.80094		DT HV star	4	2			2	10			0			
616	Smerri Dige	OFFLINE	2018-11.0	8.20			2.80056	-	DT HV soat		0	9	9.	4							
	Search Days	OFFLINE	3034.11.20	4.19			3.80296	-	DT HV asam	0						a	0	0			
401	Deserve Orga	OFTUNE	3004.11.0	4 18	101.000		180056	-	27 HV Net-	9			0	4		0	9				
482	Gowert Draw	OTTUNE	3004 11 20	6.16	142,258	349	10.002			9			1.1	0							
475	Govern Orga	OFFLINE	2004.11.0	8.18	81,758	347	0.01862		Traper texts	9		2			0	α.	10.1	0			
472	Generi Oge	OTUNE	200.11.0	6.07	100.001	. 161	10100		Traper tests	4	4	0	1.1	4	0	0.		0			
	Generi Dişa	OFFLINE	2018-11-20	6.12	1,221,711	25,403	2,83056		Trapper laws	9		0	41.5	4.			10.1	0			
100	Down Days	OFFLINE	201611.2		32.712.148	18,855	1.80036	-	Trapper lawles and		2	2	100	0				0			
-	Trangition	OFTLINE	2018-11.00	5.14	4.394,738	576	1.40034			3	a	3				3		0			
962	Vegilin	OFFLINE	3004 11 0	8.12	1.078,460	976	10000					01	2			0					
645	Ardiew Tork	OFFLINE	2008.00.20	4.66	177.850.87	27.797	140096		High landson trig	0	0	0	0								
104	Ardine Tok	BONDY	2008.11.20	140	101.000.00	27,048	3.80236	Descent 1	High-services into							a.	100	0		01	
817	Ard the Total	OFTUNE	2114.11.0		8.621.162	6.311	18008	manung f		9	a	a			•	α.	0	۰.			
	Emanuels (11)	BINOT	2006-11-0	1.23	10.152.571	8.942	3,60004	104.10	High-leader big				0.			0				01	
643	Emanuela (3 k	BENOTY	2004 H D	4.32	2171.306	2,000	1.81004	-		0	a	a	0	0		Q.	0	0		40	
-	Erenan D.A.	NINT	2006.00.20	121	1791.00	1,000	140004	104.70	re tableation as		0	0	0			2	2	0		41	
	Emeran D b	DIRCHT	2108.11.24	1 20	mant	529	1.835.54	and a							3		0	3		01	

The CMS Centre at DESY

• At DESY, one of the three major sites worldwide is fully operational

- two additional consoles added recently
- Regular (daily) remote DQM shifts during CMS global data-taking
 - shift persons from DESY and Hamburg University
 - currently ongoing for mid-week global runs
 - offline shifts for reprocessed data
- Future plans:
 - computing shifts (Tier-1, Tier-2, MC production)
 - sustain 1/3 of data-taking shifts
 - shifts for reprocessed data

Computing & Physics

[showing only DESY-HH part of traffic]

- Upgrade of Tier-2 computing resources
 - CPU: in total 2600 cores for all supported projects
 - 30% each for ATLAS + CMS (controlled by fair-share)
 - Disk: ~700 TB
 - all pledges fulfilled

Performance of CMS-Tier 2 at DESY

→ Excellent reliability performance. DESY usually among the top five.

Status of the National Analysis Facility (NAF)

LHCh

- Ramp-up of the NAF infrastructure according to plan
- ATLAS & LHCb use the NAF batch facility intensively
 - also used by non-LHC groups (e.g. ILC)
- CMS uses the Grid part of the NAF (not shown)
- → Generally, LHC computing is operating very smoothly at DESY

- The physics contributions of DESY to the CMS experiment are closely linked to the overall structure in Germany
 - close cooperation also with DESY theory group
- Presently mainly preparatory
 - these activities need to expand to actually perform analyses on real data
- Top physics
 - precision measurements with high statistics (1 ttbar / s at 10^{33} cm⁻²s⁻¹)
 - 2 PhD theses + 1 diploma thesis finalized in 2008
- QCD and small-x physics
 - key point: parton dynamics / proton structure
 - saturation, multi-parton scattering, underlying event
 - very early measurement (with ~ 1 pb⁻¹ of good data)
 - directly connected to CASTOR, rich experience from HERA

CMS	Aachen	DESY	Hamburg	Karlsruhe
SUSY	Х	Х	X	Х
Higgs	Х	Х		Х
BSM	Х			Х
SM-QCD		Х		Х
SM-top	Х	Х	X	Х
SM-	v			
bottom	^			
SM-tau	Х			

Ramping-Up Physics: Young Investigator Groups

- Very attractive field for Young Investigator Groups
- Already existing YIG will address top production with first LHC data
 - top quark characteristics
 - measurement of top cross section
- New: Higgs search
 - origin of mass
 - crucial test of standard model
- New: Search for Supersymmetry
 - candidate particles for dark matter
 - possible unification of fundamental forces
- Direct interplay with Helmholtz Alliance "Physics at the Terascale"
 - National Analysis Facility (NAF)
 - Analysis Centre

Katerina Lipka (Spring 2008)

Physics of Gluons and Heavy Quarks from HERA to LHC

DESY – Uni Hamburg – Uni Mainz

HERA / CMS

Alexei Raspereza (Spring 2009)

Probing electroweak Symmetry Breaking at the LHC: Higgs Physics with the CMS Detector

DESY – IEKP Karlsruhe

CMS

Isabell Melzer-Pellmann (Spring 2009) Supersymmetry at the Terascale **DESY** – Uni Hamburg CMS

Detector Upgrade (Update)

Detector Upgrades for sLHC: Tracker

- Main challenges:
 - much higher track density per bunch crossing
 - increase granularity to keep occupancy low
 - sensors with short strips (strixels)
 - tracker should be included in L1 trigger
 - module design
 - important constraint: material budget
- DESY joined Central European Consortium for sensor qualification & design

material (present CMS tracker)

Tracker Upgrade for sLHC: DESY Involvement

- Sensor aspects
 - measurements of test structures & prototype sensors
 - development of common database for all measurements
 - understanding and assistance in simulations of the sensor behavior
 - using two fully equipped labs in Zeuthen
- Study integration aspects, optimizing
 - mechanical stability
 - thermal layout → CO₂ based cooling scheme

with Finite Element calculations

 As soon as person power available, participate in simulations of tracker

- 1 sensor (100 mm x 100 mm)
- 2 x 1024 x 5 cm strixels
- ~ 95 um pitch

- I sensor (100 mm x 100 mm)
- 4 x 1024 x 2.5 cm strixels
- ~ 95 um pitch

- CMS experiment is completing shutdown maintenance & last steps of installation
 - including CASTOR & BCM reinstallation
- Past months have been used intensively for important commissioning exercises
 - very notably 4-week CRAFT cosmics run
 - invaluable experience for commissioning alignment/calibration & DQM
 - final touches to HLT infrastructure
- DESY LHC computing in very good shape
- Participation in detector upgrade program is taking shape
- New Young Investigator Groups (YIG) with attractive physics program starting up now
- DESY-CMS group preparing well for analysis of first LHC data

Backup Material --

CASTOR (cont'd)

- Radial field component poses another problem:
 - at high magnetic field, the former
 Spacal PMTs are limited to a B field inclination of ≤ 35°
 - this angle is exceeded in parts of the acceptance

- National Analysis Facility (NAF)
 - for German CMS physicist, production-grade end-user analysis functionality
 - improve competitiveness of German CMS groups by facilitating data analysis
 - large synergies with Tier-2 center
 - plans for further use of NAF for specific data analysis operations
 - e.g. developments for alignment (under discussion with Hamburg Univ., Karlsruhe and Aachen)
- Distribution of experiment-specific computing coordination & services among German institutions

CMS	Aachen	DESY	Hamburg	Karlsruhe
Tier-1		Х		XXXX
Tier-2	XXX	XX	XX	
CMS-D	XX	Х	XX	
Coordination	Х	XX		

- Preparation for sLHC (2010-2014)
 - R&D for radiation hard sensors (e.g. CVD diamond, GaAs)
 - redesign of BCM1F to cope with higher fluxes (fast monitor)
 - development and test of components for BCM1F
 - application for YIG has been approved
- Synergy with the R&D for a future linear e+e-- collider (FCAL):
 - all R&D topics are embedded in international projects (BMBF-JINR, CARAD)
 - collaboration with Uni Karlsruhe (YIG)

Muon Track Tagger (MTT)

- Combine tracks from the tracker with a 'space point' in an additional scintillator tile layer
 - better p_T resolution already within L1 trigger (as presently in HLT)
- → Exploit the expertise collected within the ILC calorimetry R&D
 - analog HCAL with scintillator tiles
 - system aspects of modules with SiPM readout (interplay of sensors with electronics, calibration and monitoring)

CRAFT: Alignment/calibration & Data Reprocessing

	CRAFT data taking	Alignment & Calibration	Rele	ease valida and 1 st Reproc	ition (22) essing	X)	Alignment & Calibration	2 nd Reprocessing				
October November				December Jar			uary February					
Tracker a	alignmen	t and APEs			(See next slide)							
DT and (CSC aligr	nment			Track-based and optical alignment							
DT tTrig	and vDrif	ft			Improved reconstruction in MB1s Wh+-2 for B on							
CSC gai	ns, pedes	stals, noise	and c	crosstalk	Based on test pulse data							
Hcal ped	estals ar	nd gains										
ECAL int endcaps	ercalibra	tion and AE)CToC	GeV for	Based on lab measurements of light yield, VPT gain and quantum efficiency							
SiStrip g channels	ains, Lore	entz angle a	and b	ad	Includes masking of modules with high cluster occupancy							
SiPixel g	ains and	Lorentz an	gle									

- Very comprehensive set of alignment & calibration constants
- Validation & sign-off procedures in place
- Routinely operation of calibration & reprocessing cycles

DQM & Data Certification: End-to-End Workflow

