

Helmholtz Program: Matter and the Universe (MU)

PoF III Topic: Fundamental Particles and Forces

DESY Research Unit: Experimental Particle Physics

Axel Lindner Center Evaluation DESY, 5 – 9 February 2018

Experimental particle physics on-site (DESY in Hamburg)

Using infrastructure at DESY in Hamburg

 Approaching the dark sector via axion / axion-like particle experiments:

ALPS II (under construction)

MADMAX (under preparation)

IAXO (under preparation)

Nonperturbative QED in strong fields with

LUXE (feasibility study)

Courtesy S. Barke, UF postdoc at ALPS II

https://www.slac.stanford.edu/exp/e144/focpic/focpic.html

Looking for an entrance to the dark sector

A dark sector beyond the Standard Model

- is strongly motivated by cosmology,
- might be complex with several constituents.

Axions and axion-like particles

- are strongly motivated by theory (CP conservation in QCD)
- and cosmology (dark matter),
- might be starting to show up in astro(particle) physics already
 - excess radiation from stars,
 - transparency of the universe to TeV photons,
- offer new experimental approaches towards the dark sector,
 - strongly guided also from DESY theory.

http://www.symmetrymagazine.org sites/default/files/images/standard Feature_DarkMatter3.jpg

A. Ringwald, also member of exp. collaborations.

How to look: exploiting photon couplings

From conversion in a magnetic field ...

Primakoff-like effect (Sikivie '83)

... to light-shining-through-a-wall

ALPS II: $P(\gamma \rightarrow a \rightarrow \gamma) \approx 10^{-36}$

How to look: three kinds of approaches

 Purely laboratory experiments
 "light-shining-through-walls", optical photons, generation of ALPs in the lab.

Helioscopes
 ALPs emitted by the sun, X-rays,

 Haloscopes looking for dark matter constituents, microwaves.

Where to look: hot spots in parameter space

Three main regions of interest:

- Axion-like particles:
 TeV transparency, stellar evolution,
 m_a < 10⁻⁷eV, g_{ay} = O(10⁻¹¹GeV⁻¹)
- QCD axions:
 CP, stellar evolution, (dark matter),
 m_a = O(10⁻³eV), g_{aγ} = O(10⁻¹¹GeV⁻¹)
- QCD axions:
 CP, dark matter,
 m_a = O(10⁻⁴eV), g_{aγ} = O(10⁻¹⁴GeV⁻¹)

Where to look: hot spots in parameter space

Three main regions of interest:

- Axion-like particles: TeV transparency, stellar evolution, $m_a < 10^{-7} eV$, $g_{a\gamma} = O(10^{-11} GeV^{-1})$, ALPS II.
- QCD axions: CP, stellar evolution, (dark matter), $m_a = O(10^{-3}eV)$, $g_{a\gamma} = O(10^{-11}GeV^{-1})$, IAXO.
- QCD axions: CP, dark matter, $m_a = O(10^{-4}eV)$, $g_{a\gamma} = O(10^{-14}GeV^{-1})$, MADMAX.

Any Light Particle Searches @ DESY in Hamburg

From ALPS I to ALPS II

ALPS I

- · based on one HERA proton accelerator dipole magnet,
- initiated 2006 by theory, exp. particle physics and administration,
- · approved 2007 and concluded 2010,
- most sensitive ALP search experiment in the lab up to 2014.

Basis of success:

combine forces with LIGO community (long optical resonators)

to implement an optical resonator in the magnet bore.

Any Light Particle Searches @ DESY in Hamburg

From ALPS I to ALPS II

ALPS I

- based on one HERA proton accelerator dipole magnet,
- initiated 2006 by theory, exp. particle physics and administration,
- approved 2007 and concluded 2010,
- most sensitive ALP search experiment in the lab up to 2014.

R Bähre et al 2013 JINST 8 T09001

ALPS II

- proposed 2011, TDR evaluated in 2012, directorate decided to continue with the preparatory phase,
- construction phase started in 2017.
- Main goal: increase sensitivity on g_{aγ} by > 10³ to probe for axion-like particles motivated by astrophysics.

Page 9

Main components

10+10 straightened dipole magnets from the HERA proton accelerator

Production Cavity and Regeneration Cavity, mode matched

Main components: optics

Main components: optics in the 20 m long prototype

Main components: optics achievements in the 20 m long prototype

Long baseline optical resonators: ALPS II optics becomes cutting edge

plot from LIGO T-1400226-v6

Research Article Vol. 24, No. 25 | 12 Dec 2016 | OPTICS EXPRESS 29237

Optics EXPRESS

Characterization of optical systems for the ALPS II experiment

AARON D. SPECTOR, 1,* JAN H. PÖLD, 2 ROBIN BÄHRE, 3,4 AXEL LINDNER, 2 AND BENNO WILLKE 3,4

¹Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg

Germany

²Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany

³Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstraße 38 D-30167 Hannover, Germany

⁴Institute for Gravitational Physics of the Leibniz Universität Hannover, Callinstraße 38, D-30167

Hannover Germany

Demonstration of the length stability requirements for ALPS II with a high finesse 10 m cavity

Jan H. Põld.^{1,*} and Aaron D. Spector¹

 1 Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany 1 jan-pold@desy.de

https://arxiv.org/abs/1710.06634

DESY. On-site experiments | Axel Lindner | MU | EPP

Page 13

Collaboration

Significant funding support also by the

Results and schedule

Results:

- Axions and ALPs: none (no data run yet ...)
- Publications:
 5 on optics and detector developments;
 several conference contributions.
- People (since 2012):
 6 Ph.D. theses completed,
 about 8 to come,
 4 postdocs left for a next career step.

Schedule:

Start data taking in the HERA tunnel in early 2020.

HERA hall North (former H1 experiment at HERA)

On-site experiments

A timeline

2012: ALPS II R&D 2017: ALPS II construction 2020: ALPS II data run

Future options:

2021:

Prototypes MADMAX, IAXO ?

2022: LUXE ?

Future option I: MAgnetized Disc and Mirror Axion eXperiment

Direct dark matter search with MADMAX

Collaboration:

- 8 Institutes from 3 countries.
- Formal collaboration founding 20 October 2017 at DESY.

Experiment:

- Motivation:

 look for well motivated
 axion dark matter (for example "SMASH") in a mass region not accessible by present techniques.
- Approach:
 install a tunable "booster"
 of 80 dielectric disks inside
 a 2 m long dipole magnet
 providing
 B²·A = 100 T²m²
- Timeline: prototype ready in 2021.
- Location: next to ALPS II in HERA North, funding proposal for infrastructure approved by Helmholtz.

Future option II: International AXion Observatory

Searching for solar axions with IAXO

Collaboration:

- 17 Institutes from 8 countries.
- Formal collaboration founding 03 July 2017 at DESY.
- DESY has offered to host IAXO.

U. Heidelberg (Germany)

U. Heidelberg (Germany)

St. Petersburg (Russia)

U. Mainz (Germany)

INR-Moscow (Russia)

CERN

U. Barry (US)

INAF-Milano (Italy)

U. Zaragoza (Spain)

U. Cape Town (S. Africa)

Experiment:

- Motivation: explore a well motivated axion parameter region (for example stellar evolutions) not accessible by other techniques.
- Approach:
 use experience gained at
 CAST (CERN) to optimize
 solar axion searches with
 dedicated magnets, X-ray
 optics and detectors.
- Timeline: prototype ready in 2021.
- Location: several options at DESY in Hamburg.

Free bore [m]	0.6
Magnetic length [m]	10
Field in bore [T]	2.5
Stored energy [MJ]	27
Peak field [T]	4.1

Future option III: Laser Und XFEL Experiment

Probing nonperturbative QED with LUXE

Physics:

- · Probe the strong field regime of QED around $E_{crit} = \frac{m_e^2 c^3}{e^b} \approx 1.3 \times 10^{18} \text{ V/m}$
- Might be relevant also for astrophysics (neutron stars) and atomic/molecular physics.
- Goal: extend the parameter range of E144 (SLAC 1999) by an order of magnitude.

Technique:

- Collide the European XFEL electron beam (17.5 GeV) with a laser providing 10²¹ W/cm² at 500 nm.
- Measure the rate of $e^-+n\omega \rightarrow e^-e^+e^-$ and compare its asymptotic value to QED predictions.

Possible layout:

Status:

First discussions on feasibility ongoing:

Supported by the DESY Strategy Fund.

Summary

Experimental particle physics on-site

Axion / axion-like particle experiments:

- DESY expertise and infrastructure in collaboration with strong partners provide excellent opportunities for a break-through in hidden sector searches.
- ALPS II is under construction, DESY contributes to the preparation of MADMAX and IAXO. All three will be world-leading.
- New collaboration among different communities have formed, for example ALPS II: particle physics and gravitational waves

Probing nonperturbative QED with LUXE:

 Opportunities for particle physics with the unique electron beam of the European XFEL are being explored.

ALPS II and future particle physics on-site experiments at DESY in Hamburg

- (re-) use DESY's unique infrastructure and capabilities,
- · perfectly complement DESY's engagement in remote experiments,
- offer a unique environment for the development of young people.

R. Hodajerdi, ALPS II

Page 20

Supplements

Axions

CP conservation of QCD and the neutron's EDM

Text

Axions

Indications from astrophysics

Text

How to look: exploiting photon couplings

Decay to photons

• Not observable in the parameter region addressed here.

Axion lifetime: $\tau(m=1eV) = 10^{16} \text{ yr}$

Conversion in a magnetic field

• Primakoff-like effect (Sikivie '83)

B=10T, I=10m $P(a\rightarrow \gamma) \approx 10^{-18}$

Axions and ALPs

Three different approaches

Pros and Cons of LSW, Helio, Halo

Axions

LSW in the lab

Summary of proposals and three independent inventions.

Main components: optics

Laser:

- developed for LIGO,
- based on 2 W NPRO by Innolight/Mephisto (Nd:YAG, neodymiumdoped yttrium aluminium garnet),
- 1064 nm, 35 W, M²<1.1

Cavities

Production Cavity (PC)

Regeneration Cavity (RC)

Main components: optics achievements in the 20 m long prototype

Cavities in the 20 m ALPS IIa laboratory

	Requirement	Status	
PC circulating power	150 kW	50 kW	Probably caused by micro-
RC power buildup factor	40,000	23,000	roughness of the mirror substrates.
CBB mirror alignment	< 5 µrad	< 1 µrad	
Spatial overlap	> 95%	work ongoing	
RC length stabilization	< 0.5 pm	< 0.3 pm	

MADMAX

Comparison to other experiments

LUXE

Alternative approaches

Comparison E144

Comparison FACET, ELI

Page 30
Page 30