

Helmholtz Program: Matter and the Universe (MU)

PoF III Topic: Fundamental Particles and Forces

DESY Research Unit: Experimental Particle Physics

Ingrid-Maria Gregor Center Evaluation DESY, 5 – 9 February 2018

Detector Operations and Performance Studies

Successful operation of LHC Detectors

Unique opportunity to gather further experience

- CMS: fast beam condition monitor (BCM1F) for online measurement of luminosity constructed at DESY and group has a leading role in operation.
- ATLAS: responsibility for maintenance and further development of prompt calibration loop for the semiconductor tracker (SCT).

Key contributions to data analyses

- Involved in many performance studies required for successful data analyses:
 - from photon identification to Monte Carlos studies.
- CMS: pivotal role in alignment of CMS detector, handling about 200000 alignment parameters simultaneously.
- ATLAS: concentrating on tracking aspects for current and future tracking systems to adjust to ever increasing pile-up events.

Simplified path from raw data to physics results.

daily Δz of vertex detector half shelfs

LHC Upgrades

Full exploitation of the LHC with up to 4000 fb⁻¹

Upgrades of machine and detectors are necessary to reach goal.

- Germany contributes significantly to phase 1 and phase 2 detector upgrades
 - BMBF: 90 MEUR for all LHC experiments
 - Helmholtz: 22 MEUR for ATLAS, CMS and ALICE

DESY is major player in building new tracking detectors

Phase 1:

- ATLAS added innermost layer (IBL): DESY strongly contributed to detailed test beam studies (telescopes)
- CMS replacing pixel detectors: all modules for outer barrel layer built by DESY and German universities (~50% of new barrel).

Phase 2:

 One outer tracker end-cap each for ATLAS and CMS assembled by Germany with DESY as the hub.

ttbar event with 140 pile-up events (ATLAS simulation)

Peak interactions per crossing versus operation years as example for ATLAS. $_{\rm Page\ 3}$

Phase 1: CMS Pixel Detector

Module production at DESY

Outer pixel barrel modules built in Germany

- At DESY an in-house flip-chip bump-bonding process was established to ensure high module production quality.
 - Significant R&D was required on bump-bonding material and process details.

More details also see MT-DTS parallel session.

Completed production in time

- 287 modules in 1.5 years
 (~420 sensors, ~6700 ROCs, ~30millon solder balls, ~224k wire bonds)
- Pre-commissioning at PSI winter 2016/17.
- Detector installed in CMS in spring 2017 and commissioned successfully.

Very successful collaboration between scientists and engineering groups at DESY.

Photograph of single CMS module

Fully assembled layer 4 barrel (half).

Phase 2: R&D for the Tracker Upgrades

Next generation LHC Detectors build at DESY

ATLAS and CMS: significant upgrades for the HL-LHC phase

- Replace current inner tracking systems by more radiation-tolerant and granular silicon detectors.
- Coherent collaboration plan for all involved German universities and DESY: delivering one end-cap each.
- DESY groups play leading roles in the design and construction of tracking detectors.
 - Preparations started in 2010 with an extensive R&D program.

R&D from detector concept to production

- Covering many areas from simulation to mechanical construction.
- Supported by R&D performed within "Matter and Technologies".
- Technical Design Reports indispensable milestones on way to production
 - TDRs approved in 2017 (ATLAS April, CMS December)
 - DESY members main authors of TDRs.

Planned workflow during production (example ATLAS)

	ATLAS	CMS
Radiation damage	X	Х
Module design	X	X
Mechanical structures	X	X
Electronics/DAQ	X	X

DESY R&D involvement

Phase 2: The End-Caps

Delivering two end-caps to CERN has highest priority

- Schedules in TDRs plan for end-cap deliveries to CERN end of 2024
 - Including about 3 years of module production.

ATLAS

- Silicon strip end-cap assembled at DESY in strong collaboration with the universities of Berlin, Dortmund, and Freiburg.
- 2,000 modules with 20m² silicon area to be built at Hamburg and Zeuthen.
- Tested modules to be loaded on structures and into global mechanics. Full system test before shipping to CERN.

CMS

- New tracker end-cap will also be assembled at DESY, in strong collaboration with RWTH Aachen and KIT.
- DESY committed to build 1,000 modules ~10 m² of silicon area.
- Responsible for the construction of the mechanical structures to locally support the modules necessary for one end-cap.

ATLAS ITk Strips Detector end-cap

CMS Outer Tracker end-cap.

Phase 2: R&D Highlights – Silicon Modules

Next generation LHC Detectors build at DESY

Novel concepts developed for HL-LHC

- ATLAS: silicon sensor directly glued onto structure providing cooling, power control, and data transmission.
- CMS: modules providing particle momentum information by correlation of hit signals in two closely spaced silicon sensors.
- DESY leading role in sensor studies and module designs: layout, material choices, thermo-mechanical properties, and production optimization.
- Performance studies: silicon sensors, full modules before and after irradiation
 - DESY test beam key for tracker developments.

From silicon modules to full detector

- Monte Carlo simulations to optimize tracking performance of the detector.
- Simulations and measurements of thermo-mechanical behavior: modules, petals, and the full system.

First end-cap module produced at DESY (Zeuthen).

Drawing of CMS PS-Module.

Phase 2: R&D Highlights – Mechanics & Electronics

Modules and mechanical structures

Design of mechanical structures

- Structures combine mechanical stability and embedded cooling pipes.
- Need to provide precise positioning of modules at minimum mass.
- Material choices by material machining tests, prototyping and extensive characterisation of prototype parts.
- Prototypes developed and constructed at DESY.
 - Petal for ATLAS and part of a Dee for CMS.
 - Focus on assembly sequence, mechanical stability, and scalability.
 - Measurement of thermo-mechanical properties.
- Full-system and integration aspects currently being followed up.

More details also see DTS parallel session.

Interface between on-detector and off-detector (ATLAS)

 DESY has responsibility for the electrical design of high speed interface card (10GB/s links).

Thermo-camera images of petal prototype and the Dee small prototype.

Detector Assembly Facility (DAF)

Infrastructure for LHC Upgrades

Detector assembly facility extremely important for upgrades

- Dedicated facility for detector development and construction to be used for HL-LHC tracking detectors.
- Strengthening DESY's position as national lab in Germany and beyond.
- Serving ATLAS and CMS needs with a common infrastructure

DAF layout

- Existing buildings 25c and 26; about 1000 m² clean rooms and 200 m² lab space.
- 10 MEUR from DESY for refurbishment and lab equipment.

DAF status:

- Clean rooms in 25c installed including technical building infrastructure.
- Now being commissioned; begin of operations middle 2018.
- Assembly hall: installation of clean rooms started in February 2018.
- DAF will be in use for LHC Upgrades until about 2025.

250 m² clean room infrastructure for module production of ATLAS and CMS

Assembly hall for the end-caps

Summary and Outlook

Essential detector operations, performance studies and upgrades

- DESY picked up relevant work packages in all areas which provide the basis for the data analysis efforts:
 - Detector operations
 - Performance studies
 - Alignment and tracking
 - Simulations
- In preparation for the detectors for HL-LHC assumed major responsibilities in ATLAS and CMS.
 - Supported by R&D performed within "Matter and Technologies".
- The new DAF infrastructure is essential ingredient.
- Exploiting synergies with and resources of technical groups.

DESY will act as the system integration hub in Germany for one end-cap for the new tracking detectors of both experiments, ATLAS and CMS.

Thermo-mechanical petal prototype.

Clean room in building 25c.

Backup

Additional material for possible discussions

Phase 1: Improved Pixel Detectors

Four layer systems for ATLAS and CMS

Adding one pixel layer for efficient operation at increasing luminosities

- ATLAS added additional innermost layer (IBL)
 - DESY strongly contributed to detailed test beam studies (telescopes)
- CMS replaced complete pixel detector with new system adding an additional layer to the barrel and forward detectors
- CMS-Germany was responsible for producing modules for the 4th layer
 - one half from DESY and Hamburg University
 - one half from RWTH Aachen and KIT

CMS pixel barrel: comparison original and Phase 1

Phase 2: R&D Highlights

Next generation LHC Detectors build at DESY

Examples of R&D towards the tracking detectors for HL-LHC

- silicon sensor directly glued onto structure providing cooling, power control, and data transmission (ATLAS).
- Performance studies: silicon sensors, full modules before and after irradiation
 - DESY test beam key for tracker developments.
- Structures combine mechanical stability, embedded cooling, precise positioning at minimum mass.
- Prototypes developed and constructed at DESY to study assembly sequence, mechanical stability, and scalability
 - Example on measurement of thermo-mechanical properties

From silicon modules to full detector

- Monte Carlo simulations to optimize tracking performance of the detector.
- Simulations and measurements of thermo-mechanical behavior: modules, petals, and the full system.

More details also see MT-DTS parallel session.

First ATLAS end-cap module produced at DESY (Zeuthen).

Thermal images of the CMS Dee small prototype.