

Helmholtz Program: Matter and the Universe (MU)

PoF III Topic: Fundamental Particles and Forces

DESY Research Unit: Experimental Particle Physics

Beate Heinemann Center Evaluation DESY, 5 – 9 February 2018

Particle Physics Landscape

Open questions challenge the standard model

The Standard Model is amazingly successful – but ...

- What is the structure of the vacuum? Is there only one Higgs field? What stabilizes it?
- Is there new physics at the weak scale?
- What is dark matter and dark energy?
- What is the reason for the matter-antimatter asymmetry?

Particle Physics Landscape

Open questions challenge the standard model

The Standard Model is amazingly successful – but ...

- What is the structure of the vacuum? Is there only one Higgs field? What stabilizes it?
- Is there new physics at the weak scale?
- What is dark matter and dark energy?
- What is the reason for the matter-antimatter asymmetry?
- → Key science drivers of experimental particle physics
- → Two complementary ways to experimentally address these questions
 - Precision measurements of known particles / processes
 - Direct searches for new particles and phenomena

Mandatory: Close interaction between experiment and theory

Particle Physics Experiments

Experiments with DESY engagement

DESY is participating in several international experiments which address these questions

- ATLAS and CMS at Large Hadron Collider (CERN)
 - Higgs boson & other precision measurements
 - Searches for new physics (e.g. dark matter)
- Belle II at SuperKEKB (KEK in Japan)
 - Precision measurements of B-mesons and taus
 - Searches for new physics
- Future colliders
 - E.g. ILC at $\sqrt{s} = 250$ GeV in Japan?
 - Higgs factory (+some new physics searches)

On-site experiments

- HERA ep collider: 1992-2007
- OLYMPUS at DORIS in 2012
- Axions: ALPS I (2007-2010) and ALPS II (2020+)

Future colliders

Experimental Particle Physics – Lifecycle Competence

Each plot comes from a separate PhD thesis (50+ PhD thesis total)

Technical contributions to ATLAS and CMS: selected highlights

LHC run 2: ~90 fb-1 of data

YIG

CMS pixel 4th layer

DESY contributions to **detector operation, data taking**,

Luminosity measurement

Construction of 287 modules for 4th layer of CMS pixel detector at DESY, installed in early 2017

Many DESY contributions to calibration, performance optimisation, and measurements

LHC measurements and searches with DESY contributions: selected highlights

Precision measurements of couplings to SM particles:

CMS: tau, b, top

ATLAS: photon, Z, top

W mass determination at the LHC

 $m_w = 80370 \pm 19 \text{ MeV}$

Major DESY contributions on modeling of W production.

Supersymmetry and dark matter searches

Precision and flavour physics with Belle / Belle II: selected highlights

B->K*II analysis

- Analysis motivated by anomaly seen by LHCb (3.4σ)
- Belle analysis also sees anomaly in muon channel (2.6σ) → More data needed!

Construction of Belle II detector

- Expect 50 times more lumi than Belle
- Vertex detector build in Germany; assembly and commissioning at DESY
- Machine-detector interface (e.g. remote vacuum connection)

OLYMPUS, HERA, future colliders ILC: selected highlights

Final analysis of data from OLYMPUS experiment, shedding light on the two-photon exchange contribution to elastic electron-proton scattering.

Final combination of HERA data Critical input to determining parton distribution of proton

ILC detector development and physics studies, e.g.

- TPC prototype
- Particle flow calorimetry (CALICE concept used for CMS HGCAL upgrade)
- · Physics studies for ILC

Strategy for Experimental Particle Physics at DESY

Outcome of the "DESY-2030" strategy process: 2018-2030

Explore the LHC and beyond

- Upgrade ATLAS and CMS for HL-LHC
- Prepare leading participation at a future global collider project

Harvest at Belle II

Data taking and analysis until ~2027

On-site experiment

- Prepare a future on-site experiments after ALPS-II
- Detector R&D & testbeam operation

DESY as a "hub":

Support projects with large German participation

Future Plans: Belle II and LHC

Construction of vertex and tracking detectors & data exploitation phase

Belle II: 2019-2027

- Assembly and commissioning of vertex detector at DESY during 2018
- Physics analyses:
 - excl. (K*II) and incl. (X_uII) Bdecays, dark sector, tau decays (LFV,LNV), ...

CMS and ATLAS: upgrade LHC to collect 3000 fb⁻¹ by 2035

- Construction of new ATLAS & CMS tracker endcaps (now 2025)
 - All components built at German institutes (universities & DESY)
 - Integration of full endcap at DESY in new detector assembly facility (DAF)
- Operation, calibration, alignment of current detectors and physics analyses:
 - Precision Higgs and SM physics
 - Searches for new physics (particularly dark matter)

Future Plans: On-Site Experiments

ALPS II

- Search for axion-like particles coupling to photons (dark matter candidate)
- Use 20 HERA magnets
- Data taking 2020+

MADMAX and/or IAXO

- Two other approaches for axion searches
- IAXO: axions from sun
- · MADMAX: axions from DM halo

LUXE

- Explore strong-field QED using XFEL electron beam + laser
- Feasibility study ongoing

Future Plans: Future Colliders

ILC based on cavities as built for XFEL

- Under consideration as global project hosted in Japan
- Strong effort in detector R&D for e+e- colliders (ILC or others)

Engaged in physics studies to evaluate scientific potential

Engaged in decision processes on future priorities (e.g. European Strategy)

Conclusions

Experimental particle physics at DESY has been very successful; we have been a pivotal contributor to international projects

We have the expertise and critical mass to make a difference and to shape the present and the future of the field, together with international partners

Many interesting activities are planned for the future, including major on-site detector construction with German universities and international partners

Backup

Some Numbers

Core-funded plus third-party-funded scientists (FTE) without Ph.D. students

Core-financed costs (2016): 21.118 MEUR

Third-party funding (2016): 2.288 MEUR

Experimental particle physics (total 111,7 FTE)