Laser-Plasma Acceleration

Results and Plans

Helmholtz Program: Matter & Technology (MT)

PoF III Topic: Accelerator Research & Development (ARD)

DESY Research Unit: ARD/ST4

Andreas R. Maier Center Evaluation DESY, 5 – 9 February 2018

Laser- and Beam-Driven Plasma Acceleration

A Closely Coordinated Approach

A complementary approach

- We study laser- and beam-driven plasma acceleration on campus
- Two technologies with complementary strengths:
 - Rep-rate and average power
 - Timing- and synchronization capabilities
 - Footprint and costs

Benefits

- Both technologies share challenges that we address in a close and campus-wide collaborative effort
 - Plasma lenses
 - Plasma diagnostics
 - PIC code development
 - Laser development

Joint development of new target concepts

Joint beamtimes to develop plasma lens

Laser-Plasma Acceleration on Campus

A Closely Coordinated Approach

LUX – Plasma-Driven Undulator

REGAE – External Injection

SINBAD – ARD Facility

FLASHForward TestLab – Med. Imaging

SINBAD

Dedicated, Long-Term Accelerator R&D Facility

SINBAD - a dedicated, long-term accelerator R&D facility

- Will integrate laser-plasma activities on campus as part of ATHENA
- Collaborative effort of DESY, UHH and Helmholtz-Athena collaborators
- Currently entering commissioning stage
- Will host:
 - External injection using ARES linac into laser-driven wake
 - Optical injection beamline LUX
 - Pilot FEL experiment
 - Medical imaging pilot studies

See talks by B. Marchetti and U. Dorda

REGAE – External Injection

Technology Development and Pilot Studies for SINBAD

REGAE is a 5 MeV electron gun for ultra-fast electron diffraction and provides unique capablities to test external injection into a laser-plasma driven wake using the 200 TW laser available on campus.

Two motivations for external injection:

- Improved beam quality using conventional injectors
- Necessary to control staged acceleration schemes

Develop core technologies

- Synchronization of laser and RF oscillators
- Create sub-fs bunches for injection: linearization scheme
- Adiabatic matching

Current status

- Beamline upgrade complete
- First beam expected for spring 2018

PHYSICAL REVIEW SPECIAL TOPICS—ACCELERATORS AND BEAMS 18, 120102 (2015)

Linearization of the longitudinal phase space without higher harmonic field

Benno Zeitler,^{1,*} Klaus Floettmann,² and Florian Grüner¹

¹Center for Free-Electron Laser Science and Department of Physics,

University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

²Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22603 Hamburg, Germany

²Deutsches Elektronen-Synchrotron DESY, Dublished 30 December 2015)

FLASHForward Laser-Wakefield Laboratory

Beam Diagnostics Development & Medical Imaging Prototyping

Plasma accelerator:

- 25 TW Ti:sapphire laser
- ionization injection with tunable electron energies: 1 mrad divergence, 5 mrad pointing, 50 pC ± 10%

e⁻-beam diagnostics R&D:

- fC to nC charge benchmarking (DaMon cavity, ICT)
- transition radiation spectroscopy with CdHgTe detector (in 2018)

LWFA-based medical scanning X-ray fluorescence imaging (XFI)

- imaging of gold-nanoclusters bound to anti-bodies
- supported by DESY Strategy Fund

Page 6

LUX – Plasma-Driven Undulator Beamline

Dedicated Plasma-Accelerator Beamline for Undulator Radiation

- Merge plasma and accelerator technology
- LUX is a 15 m long beamline with BPMs, quads, kickers, profile monitors, ...
- Master beam optics and diagnostics

- Focus on stability and reproducibility
- Fully integrated into controls system
- High rep-rate and high statistics
- Immediate step before FEL

LUX – Highlight Results

Recent Results From Late 2017 Campaign

Laser stability

• 2% rms over 24 hours (energy of final amplifier)

statistics over 43.000 consecutive shots

LUX – Highlight Results

Recent Results From Late 2017 Campaign

Laser stability

• 2% rms over 24 hours (energy of final amplifier)

First 24 hr run

- 24 hours run of a plasma accelerator
- 43.000 consecutive shots
- 98% beam

energy stability

statistics over 43.000 consecutive shots

charge stability

energy spread stability

LUX – Highlight Results

Recent Results From Late 2017 Campaign

Laser stability

• 2% rms over 24 hours (energy of final amplifier)

First 24 hr run

- 24 hours run of a plasma accelerator
- 43.000 consecutive shots
- 98% beam

First undulator radiation

- Miniature undulator
- Synchrotron type
- Demonstrated 4 9 nm

Conclusion

- We fulfilled all major milestones of the PoF3 proposal
- Mission: "from acceleration to accelerators"
- Close collaboration of national lab and university
- Approach: Merge laser-plasma with state-of-the-art accelerator technology
- Our facilities are just getting online with first highlight results demonstrated
- We want to catch up with international leading labs (Berkeley, ...)