Next great challenge beyond SLAC E144: probing a fully non-perturbative QED with electron-laser interaction

Probing strong-field QED in electron-photon interactions 21-24 August 2018 / DESY, Hamburg, Germany

Alexander Fedotov

National Research Nuclear University MEPhI, Moscow, Russia

Acknowledgements

- 1. Thanks to the organizers for invitation!
- 2. Content of the talk was extensively discussed with/contributed by:
 - N.B. Narozhny , A.A. Mironov (National Research Nuclear University MEPhI, Moscow, Russia)
 - S. Meuren

(Department of Astrophysical Sciences, Princeton University, USA)

- V. Yakimenko, F. Fiuza, M.J. Hogan, G. White (SLAC National Accelerator Laboratory, Menlo Park, CA USA)
- F. Del Gaudio, T. Grismayer, L.O. Silva (GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal)
- A.M. Pukhov, C. Baumann (Heinrich-Heine-Universität University, Düsseldorf, Germany)
- I.Yu. Kostyukov, E.N. Nerush (Institute of Applied Physics RAS, Nijniy Novgorod, Russia)
- 3. Support from **RFBR** and the **Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS"**
- 4. Details: V. Yakimenko et al., arXiv:1807.09271

Introduction

Intense Field QED (IFQED)

• In QED electron motion in external EM field is described by

- Expansion parameter: $a_0 \simeq \frac{e}{m} \mathscr{A}$ can be $\gtrsim 1 \implies \mathsf{IFQED}!$
- IFQED effects reveal for $a_0\gg 1,$ for laser intensity $I\gtrsim 10^{18}{\rm W/cm}^2$
- Dressed propagator

can be solved *exactly* for certain field configurations: *plane wave, constant field (including CCF), Coulomb field,* etc.

- Physical quantities (probability rates, cross sections) are computed as in ordinary QED, but replacing *bare* propagators with **dressed** ones
- Such IFQED dressing takes into account exactly only interaction with an external field, but not radiative corrections (see below)....

The landmark SLAC E144 experiment (mid 1990's) https://www.slac.stanford.edu/exp/e144/e144.html

Main goals:

• First experimental study of IFQED (by optical high-power laser $I \sim 10^{18}$ W/cm² + linac)

- Direct observation of:
 - nonlinear Compton scatter-

ing $e^- + n\gamma_L \rightarrow e^- + \gamma'$

• multiphoton Breit-Wheeler

process $\gamma' + n\gamma_L \rightarrow e^+ e^-$

Parameters of laser-matter interaction at extreme intensities

Classical non-linearity parameter:

Dynamical quantum parameter:

$$a_0 = \frac{e\sqrt{-\langle A^{\mu}A_{\mu}\rangle}}{mc} \sim \frac{eE_0}{mc\omega}$$

(non-)perturbativity w.r.t. ext. field

$$\chi = \frac{e\hbar\sqrt{-(F^{\mu\nu}p_{\nu})^2}}{m^3c^4} \sim \gamma \frac{E_{\perp}}{E_S}$$

importance of quantum recoil

Radiative corrections in CCF (universal model for a single particle in subcritical field $F \ll m^2/e$ if $a_0 \gg 1$ and $\chi \gtrsim 1$)

One-loop radiative corrections in CCF

Polarization operator

$$\mathcal{P}_{\mu\nu}(x,x') = e^2 \mathrm{Tr} \left[\gamma_{\mu} S^e(x,x') \gamma_{\nu} S^e(x',x) \right]$$

Physical effect: photon mass:

$$\begin{split} m_{\gamma \parallel,\perp}^2(\chi) &= \frac{\alpha m^2}{6\sqrt{\pi}} \int_1^\infty du \, \frac{8u+1\mp 3}{zu\sqrt{u(u-1)}} \, f'(z) \\ &\simeq \frac{5\mp 1}{28\pi^2} 3^{7/6} \, \Gamma^4\left(\frac{2}{3}\right) (1-i\sqrt{3}) \alpha m^2 \chi^{2/3}, \quad \chi \gg 1, \\ &z &= \left(\frac{4u}{\chi}\right)^{2/3}, \quad f(z) = \frac{i}{\sqrt{\pi}} \int_0^\infty dt \, e^{-i(zt+t^3/3)}. \end{split}$$

N.B. Narozhnyi, JETP 28, 371 (1969); V.I. Ritus, JETP 30, 1181 (1970).

Similarly, mass operator modifies electron mass m by $\sim \alpha m \chi^{2/3}$

V.I. Ritus, JETP 30, 1181 (1970); Ann. Phys. 69, 555 (1972).

Implication: perturbative theory breakdown at $\alpha\chi^{2/3}\gtrsim 1$

• If $\alpha \chi^{2/3} \simeq 1$ then radiative corrections cease being small:

$$m_{\gamma}^2 \simeq \alpha m^2 \chi^{2/3} \simeq m^2, \quad \Delta m_e \simeq \alpha m \chi^{2/3} \simeq m$$

Moreover, the free path in a rest frame $(\alpha m \chi^{2/3})^{-1}$ is sub-Compton! Indicates **IFQED perturbation theory breakdown** for $\alpha \chi^{2/3} \gtrsim 1$ (explicitly: for $\chi \gtrsim 1600$)!

- First realized by N. Narozhny and V. Ritus ~ 50 years ago. Hence the name Ritus-Narozhny conjecture (themselves they called it enhancement of radiative corrections in external field).
- Recall that in ordinary QED the radiative corrections use to scale like $\propto \alpha \log \gamma$ and can never compare to bare quantities at any reasonable energy scale (the PT breakdown corresponds to a Landau pole). Physical reasons for enhancement in CCF?!

Intuitive insight: loop scale

• In a transverse field $\mathbf{p}_{\perp} \sim e \mathbf{E} t$ and:

$$\varepsilon = \sqrt{p_{\parallel}^2 + e^2 E^2 t^2 + m^2} \approx p_{\parallel} + \frac{e^2 E^2 t^2}{2p_{\parallel}}$$
• The uncertainty principle $(p_{\parallel} \sim k)$:

$$\Delta \varepsilon \cdot t \simeq \frac{e^2 E^2 t^3}{k} \simeq 1$$

$$\Longrightarrow \qquad \left[t_{loop} \simeq \left(\frac{k}{e^2 E^2}\right)^{1/3} \simeq \frac{k}{m^2 \chi^{2/3}} \right]$$

• Corresponding transverse momentum gain and transverse size of the loop (for further details see arXiv:1807.09271):

$$p_{\perp} \simeq eEt_{loop} \simeq m\chi^{1/3}, \quad \boxed{l_{\perp} \simeq \frac{1}{p_{\perp}} \simeq \frac{1}{m\chi^{1/3}}} \quad \text{and} \quad \boxed{l_{\parallel} \simeq \frac{1}{p_{\parallel}} \sim \frac{1}{k}}$$

(indeed $m \ll p_{\perp} \ll k$, justifying the initial expansion).

Intuitive insight: loop value

• In a strong transverse field the loop becomes squeezed to sub-Compton scale $(l_{\parallel}, l_{\perp} \ll 1/m)$ – an example of a general duality:

$\textbf{STRONG FIELD} \leftrightarrow \textbf{SMALL DISTANCE}$

Having estimated the loop dimensions, we can estimate the loop volume:

$$V_{loop} \simeq \pi l_{\perp}^2 l_{\parallel} \simeq \frac{1}{m\chi^{1/3}} \times \frac{1}{m\chi^{1/3}} \times \frac{1}{k} \simeq \frac{1}{km^2\chi^{2/3}}$$

and the photon mass as the plasma frequency of a 'relativistic plasma of virtual pairs':

$$m_{\gamma}^2 \simeq \omega_p^2 \equiv \frac{8\pi e^2}{m\gamma} n_{e^+e^-} \simeq \frac{\alpha}{k} \frac{1}{V_{loop}} \simeq \alpha m^2 \chi^{2/3}$$

Direct calculation of higher-order corrections

• Some higher (up to 3-loop) order diagrams were also computed:

[only dominant contributions shown, for review see A.M.F., J. Phys.: Conf. Ser. 826, 012027 (2017)]

• This is in agreement with the **Ritus-Narozhny conjecture** that the expansion parameter is $\alpha \chi^{2/3}$.

Towards experiments

How to probe experimentally? Option 1

• Option 1: laser-beam collisions:

Multi-GeV $e^-{\rm -beam}$

High-intensity optical laser

• Assuming $\omega_L = 1 \text{eV} (\lambda = 1.24 \mu \text{m})$ and (sub-)period laser pulse:

γ (ε_e [GeV])	10 ⁷ (5000)	10 ⁶ (500)	10^5 (50)	10 ⁴ (5)	10 ³ (0.5)
<i>a</i> ₀	50	500	5000	$5 imes 10^4$	5×10^5
$I_L \; [{\rm W/cm^2}]$	2.5×10^{21}	2.5×10^{23}	2.5×10^{25}	2.5×10^{27}	2.5×10^{29}
$\chi \sim 2 \frac{\omega}{m} a_0 \gamma$	2000	2000	2000	2000	2000
$\alpha \chi^{2/3}$	1.16	1.16	1.16	1.16	1.16
Radiation loss $\delta \sim \frac{\alpha m}{\gamma} \chi^{2/3} \cdot \frac{\pi}{\omega}$	0.182	1.82	18.2	182	1820

 Some options look prospective, but would require multi-TeV class electron accelerator...

[Xie, Tajima, Yokoya & Chattopadhyay, AIP Conf. Proc. 398, 233, 242 (1997)]

How to probe experimentally? Option 2

• Option 2: same, but using pulse compression or XFEL

Multi-GeV e^- -beam

High-intensity $\mathbf{X}\text{-}\mathbf{ray}$ laser

• Assuming $\omega_L = 10 \text{keV} (\lambda = 0.12 \text{nm})$ and (sub-)period laser pulse:

γ (ε_e [GeV])	10 ⁷ (5000)	10 ⁶ (500)	10 ⁵ (50)	10 ⁴ (5)	10 ³ (0.5)
<i>a</i> ₀	5×10^{-3}	5×10^{-2}	0.5	5	50
$I_L \; [W/cm^2]$	2.5×10^{21}	2.5×10^{23}	2.5×10^{25}	2.5×10^{27}	2.5×10^{29}
$\chi \sim 2 \frac{\omega}{m} a_0 \gamma$	2000	2000	2000	2000	2000
$\alpha \chi^{2/3}$	1.16	1.16	1.16	1.16	1.16
Radiation loss	1.0010-5	1 00 10-4	1.0010-3	1.00 - 10-2	0.100
$\delta \sim \frac{\alpha m}{\gamma} \chi^{2/3} \cdot \frac{\pi}{\omega}$	1.82×10^{-5}	1.82×10^{-4}	1.82×10^{-3}	1.82×10^{-2}	0.182

• All options are prospective and requirements for electron accelerator maybe relaxed, but at cost of further progress in X-ray intensity...Subperiod X-rays also a challenge...

Option 3: beam-beam collisions (arXiv:1807.09271)

- Beams: 100GeV, $I=10^6$ A, $\sigma_z=100$ nm ($N_e\sim 10^9$), $\sigma_r=10$ nm
- Probe beam sees beam density

$$\tilde{n}_e \sim \frac{N_e}{\pi \sigma_r^2(\sigma_z/\gamma)} \sim 10^{31} {\rm cm}^{-3} \simeq \lambda_C^{-3}$$

• Beam disruption parameter:

$$D = \frac{2N_e r_e \sigma_z}{\gamma \sigma_r^2} \simeq 0.1$$

• Average energy loss in quantum regime:

$$\delta \simeq W_{rad}(\chi \sim 1) \cdot \sigma_z \simeq \frac{\alpha \sigma_z}{\gamma \lambda_C} \sim 0.1$$

• Nonlinearity and beamstrahlung parameter:

$$a_0 \simeq \frac{r_e N_e}{\sigma_r} \simeq 10^3, \quad \chi \equiv \Upsilon \simeq \frac{r_e^2 N_e \gamma}{\alpha \sigma_r \sigma_z} \simeq 10^3$$

Proposal (arXiv:1807.09271)

Parameter	[Unit]	NpQED Collider	FACET-II	ILC	CLIC
Machine Length	[km]	5	1	31	48
Beam Energy	[GeV]	125	10	250	1500
Bunch Charge	[nC]	1.4	1.2	3.2	0.6
Peak Current	[kA]	1700	300	1.3	12.1
rms Energy Sprea	d [%]	0.1	0.85	0.12	0.34
rms Bunch Lengtl	h [μm]	0.01	0.48	300	44
mus Dunsk Ciss	$\sigma_x[\mu m]$	0.01	3	0.47	0.045
rms Bunch Size	$\sigma_y[\mu m]$	0.01	2	0.006	0.001
Beamstrahlung	χ_{av}	969	_	0.06	5
Parameter	χ_{\max}	1721	-	0.15	12
Disruption	D_x	0.001	-	0.3	0.15
Parameters	D_y	0.001	_	24.4	6.8
Peak electric field	[TV/m]	4500	3.2	0.2	2.7
Beam Power	[MW]	10^{-3}	10^{-4}	5	14
Luminosity	$[cm^{-2}s^{-1}]$	10^{30}	_	10^{34}	10^{34}

15

3D simulation with OSIRIS (see arXiv:1807.09271)

Theoretical challenges and working program

- Main challenge: missing theory
- Preliminary steps [currently we are here]:
 - Simplified building blocks (dressed propagators) for $\chi\gg 1$
 - Calculation of all-order bubble correction

(conjectured as leading) to confirm/reject the RN conjecture

- Explicit and accurate reconsideration of **renormalization** in IFQED, especially of its **finite part** (with the possible insight into the **IFQED renormgroup flow**)
- Genuine self-consistent non-perturbative solution of IFQED SDEs

• Vertex problem:

Disagreement in the literature:

$$= \begin{cases} \mathfrak{G}\left(\alpha\chi^{2/3}\right), & \text{Morozov et al, JETP 53, 1103 (1981)} \\ \exists \text{ gauge} : \mathfrak{G}\left(\alpha\right), & \text{Gusynin et al, NPB 563, 361 (1999)} \end{cases}$$

Refinement needed!

Prediction of novel physical effects/signatures for the non-perturbative regime

Questions?