Electrons in	scattering

... pairs (trident)

Further motivation

The scientific interest in strong-field QED & and electron-laser experiments

Anton Ilderton

DESY/LUXE Workshop 22/8/2018

Engineering and Physical Sciences Research Council

With thanks to T. Blackburn, V. Dinu, T. Hartin & G. Torgrimsson.

Electrons in 000	Electrons in scattering DOO 000		Further motivation
The second second			

Invitation: perturbative QED

- Best tested quantum field theory.
- Coupling $\alpha = e^2/(4\pi) \sim 1/137 \ll 1$: small.
- So use Perturbation theory.
- Well tested regime.
- Successes: Lamb shift, g 2, Compton effect...

• Fundamental constants: m, e, \hbar , c. Make an electric field...

•
$$E_S = {m^2 c^3 \over e \hbar} \simeq 10^{18} {\rm ~V/m}.$$
 Sauter, Schwinger

• Work done: $eE_S \times \lambda_C = m$; pair production.

$$N/V = \left(\frac{E}{E_S}\right)^2 \exp\left[-\pi \frac{E_S}{E}\right]$$

- Nonperturbative effect.
- Still far from Schwinger ... other pair production processes?

• Fundamental constants: m, e, \hbar , c. Make an electric field...

•
$$E_S = {m^2 c^3 \over e \hbar} \simeq 10^{18} {\rm ~V/m}.$$
 Sauter, Schwinger

• Work done: $eE_S \times \lambda_C = m$; pair production.

$$N/V = \left(\frac{eE}{m^2}\right)^2 \exp\left[-\pi \frac{m^2}{eE}\right]$$

- Nonperturbative effect.
- Still far from Schwinger ... other pair production processes?

Electrons in 000	ectrons in		Further motivation
Outline			

Today: Trident pair production

- 1. Throw e^- into a laser.
- 2. e^- scatters...
- 3. ... produce pairs.
 - LUXE experiment:

Strongly coupled QFT, all-orders & non-perturbative effects

Electrons in	scattering	pairs (trident)	Further motivation
●00	000	00000	
A limit to pert	urbative metho	ode	

- Interaction is strong when $\operatorname{coupling} > 1$.
- Consider: laser of amplitude E and frequency ω .
- Coupling to field / "intensity parameter".

 $a_0 = \frac{eE}{m\omega}$

• $a_0 > 1$ now regularly achieved. ($10^{18} \text{ W/cm}^2 \text{ optical}$)

Electrons in 000	pairs (trident) 00000	Further motivation	
Relativistic, no	nlinear physics		
			eE

 $a_0 =$

 $m\omega$

A laser of amplitude E and frequency ω .

- **1**. $a_0 > 1 \iff eE\lambda > m$
- Energy gained/ laser wavelength > electron mass.
- Relativistic effects.

1. $a_0 > 1 \iff eE\lambda > m$

$$a_0 = \frac{eE}{m\omega}$$

- Energy gained/ laser wavelength > electron mass.
- Relativistic effects.
- **2.** $a_0 > 1 \iff eE\lambda_C > \omega$
 - Energy gained / Compton wavelength > photon energy.
 - Nonlinear/'multiphoton' effects.

1. $a_0 > 1 \iff eE\lambda > m$

A laser of amplitude E and frequency ω .

- $a_0 = \frac{eE}{m\omega}$
- Energy gained/ laser wavelength > electron mass.
- Relativistic effects.
- **2**. $a_0 > 1 \iff eE\lambda_C > \omega$
 - Energy gained / Compton wavelength > photon energy.
 - Nonlinear/'multiphoton' effects.
- Strong fields means a₀ > 1 ⇒ no perturbation in a₀.
 Non-perturbative, nonlinear, relativistic regime.

Strong field QED	

- (Strong) field \leftrightarrow coherent state $||aser\rangle \sim \exp(a^{\dagger})|0\rangle$
- ∼ Infinitely many Feymnan diagrams for any process...

Electrons in 00●	000	pairs (trident)	Further motivation
Strong field QE	D		

- (Strong) field \leftrightarrow coherent state $||aser\rangle \sim \exp(a^{\dagger})||0\rangle$
- ~ Infinitely many Feynman diagrams for any process...

 $_{+\ldots+}$ • Resum?

OO●	000	00000 (trident)	0000
Strong field QE	D		

- (Strong) field \leftrightarrow coherent state | laser $\rangle \sim \exp(a^{\dagger}) | 0 \rangle$
- Infinitely many Feynman diagrams for any process...

 $+\ldots+$ • Resum?

Furry expansion Furry 1951

• Strong coupling a_0 : treated exactly. Lorentz force moved into double line.

• Coupling α to dynamical fields: perturbative as usual. Radiation of photons, pairs, etc, in vertex as usual.

Recent experiments at Gemini

Cole et al. PRX 8 (2018), Poder et al. PRX 8 (2018)

- $a_0 > 1$; nonlinear effects.
- Signature: harmonics,

Khrennikov et al PRL 114 (2015)

and interference patterns.

- Acceleration, radiation, energy loss.
- Recent experiments at Gemini

Cole et al. PRX 8 (2018), Poder et al. PRX 8 (2018)

- $a_0 > 1$; nonlinear effects.
- Signature: harmonics,

Khrennikov et al PRL 114 (2015)

and interference patterns.

Quantum nonlinearity parameter

$$\chi = \frac{e}{m^3} \sqrt{p \cdot F^2 \cdot p} = \frac{E_{\rm r.f.}}{E_S} \simeq \gamma \frac{E}{E_S}$$

- Quantum effects: $\chi > 0.01$
- $\chi_{\text{gemini}} \sim 0.1 \dots \chi_{\text{LUXE}}$ higher...

- Photon can be converted to pairs.
- Nonlinear Breit-Wheeler.
- Non-perturbative in incoming photon χ_{γ} .

$$P \sim \chi_{\gamma} \exp\left(-\frac{8}{3\chi_{\gamma}}\right)$$
 for $a_0 \gg 1$
 $\chi \ll 1$

- Optimal: $\chi \sim \mathcal{O}(1)$.
- Nonlinear effects.
- Signature: thresholds & channel opening.

From Dinu Heinzl Ilderton Marklund PRD 89 (2014)

Electrons in	scattering	pairs (trident)	Further motivation
000	00●	00000	
Motivation:	observing o	ascades	

•
$$I \simeq 10^{23} - 10^{24} \text{ W/cm}^2$$
 or $a_0 \simeq 300 - 10^3$

- Acceleration \rightarrow emission \rightarrow pairs ()
- Avalanche/cascade of particle production. Bell & Kirk, PRL 101 (2008)
- Reduces field; inhibits Schwinger Fedotov et al, PRL 105 (2010), S.S.Bulanov et al, PRL 105 (2010)
- Application of cascade control: gamma source. Gonoskov et al, Phys.Rev. X7 (2017)

Electrons in 000	scattering 00●	pairs (trident)	Further motivation
Motivation:	observing cascades		

- $I \simeq 10^{23} 10^{24} \text{ W/cm}^2$ or $a_0 \simeq 300 10^3$
- Acceleration \rightarrow emission \rightarrow pairs ()
- Avalanche/cascade of particle production. Bell & Kirk, PRL 101 (2008)
- Reduces field; inhibits Schwinger Fedotov et al, PRL 105 (2010), S.S.Bulanov et al, PRL 105 (2010)
- Application of cascade control: gamma source. Gonoskov et al, Phys.Rev. X7 (2017)
- First step is trident.

 $\ddot{-}$ Contains both NLC & NBW, first step of cascade...

- For $a_0 \ll 1$ virtual channel dominant. (Power counting.) SLAC: "Virtual channel negligible"... but $a_0 \simeq 0.4 < 1$
- a₀ not « 1? Pulse length effects and power counting? Weizsäcker Williams approx? Neglects interference...

- Improved trident results?
- Can we study SFQED at LUXE?
- Interesting regime?
- Can we study trident?
- How many pairs could be created?
- Other processes?

- ✓ Recent work.
- $\checkmark a_0 > 1.$
- ✓ Highest χ .
- \rightarrow Sims.
- \rightarrow Sims.
- \rightarrow Sims.

Electrons in 000	scattering 000			pairs (trident) 00●00			Further motivation			
Simulation rocu	te	Experiment	$\lambda(nm)$	Elaser	focus	pulse	$E_{e^-}(\text{GeV})$	ξ	χ	
Simulation result	ιs	LUXE/ _{ 2	527 /1053	2 J	100 μm^2	0.05 ps	17.5	2	0.63	

- Particle in Cell simulations.
- Step particle through field
- LCFA + Monte Carlo/timestep.
- $a_0 \simeq 2 \implies 10^{-6}$ pairs/ electron.

- Particle in Cell simulations.
- Step particle through field
- LCFA + Monte Carlo/timestep.
- $a_0 \simeq 2 \implies 10^{-6}$ pairs/ electron.

- Corrections to positron spectrum.
- Must account for in $\not\prec$ trident.

Thanks to Tony Hartin for the above

Gonoskov et al PRE 92 (2015)

Thanks to Tom Blackburn. Blackburn, Ilderton, Marklund, *t*o appear

Electrons in	scattering 000		pairs (trident) 000€0			Further motivation		
Simulation results	Experiment	$\lambda(nm)$	E_{laser}	focus	pulse	$E_{e^-}({\rm GeV})$	ξ	χ
	LUXE/ΗΙξ	800	5 J	100 μm^2	0.02 ps	17.5	7.7	1.6

<u>Trident</u>

 $a_0 \simeq 8 \implies 10^{-4}$ pairs/ electron.

(Multiple) Nonlinear Compton

• Some contribution.

Summary

• First approximation only.

Trident is a primary process at LUXE.

- Virtual channel neglected.
- Closer investigation of trident...

 Electrons in...
 ...scattering ...
 ...pairs (trident)
 Further motivation

 000
 0000
 0000
 0000

 Trident Calculations: the state of the art
 0000
 0000

Ritus NPB 44 (1972), Hu et al PRL 105 (2010) , Ilderton PRL 106 (2011), King& Ruhl PRD 88 (2013) Fedotov & King PRD 98 (2018), Mackenroth & DiPiazza 2018

 $\checkmark~$ All terms now included. (× Early results neglected exchange.)

Dinu & Torgrimsson PRD 97 (2018) arXiv:1711.04344 & Talk by Greger Torgrimsson

• Compact analytics in various limits, e.g.:

$$\mathbb{P} \sim \exp\left[-\frac{4a_0}{\chi}\left((2+a_0^2)\Lambda - \sqrt{1+a_0^2}\right)\right]$$

 $a_0 \simeq 1, \ \chi \ll 1, \ \Lambda = \sinh^{-1} 1/a_0.$

- Detailed numerical spectra →
- Lots of information to uncover.

 $a_0=1,$ long pulse. Three outgoing $e^{\pm}.$ Momenta constrained: \triangle

Curves: lines of constant c.o.m. energy $s/m^2 \sim 1 + 2\gamma \omega/m \sim 1 + 2\chi/a_0$

- Very large quantum nonlinearity $\chi \gg 1$. . . what happens?
- Constant field scalings:

Narozhny, Morozov, Ritus 1968 – 1981

- Breakdown of Furry expansion at $\alpha \chi^{2/3} \simeq 1?$
- $\chi \simeq 1600 \implies$ laser $a_0 = 2000$ for 100 GeV electrons.
- Many open questions . . . intriguing.

Fedotov, J. Phys.: Conf. Ser. 826 (2017) 012027, & talk by Alexander Fedotov

Electrons in	scattering	pairs (trident)	Further motivation
000	000	00000	
More physics	motivation		

I ran out of time for

• Light-by-light and vacuum birefringence Talk by H. Gies

• Using intense lasers to probe BSM physics.

Talks by Selym Villalba-Chavez & Ben King

• New input to QFT; tadpoles, bubbles and effective actions.

Electrons in	scattering 000	pairs (trident) 00000	Further motivation
Conclusions			

A trident experiment at $a_0>1$ and $\gamma\gg 1$

- \checkmark Nonlinear effects.
- ✓ Quantum effects.
- $\checkmark~$ Further into strong-field quantum regime ($\chi\simeq$ 1).
- $\checkmark\,$ Can probe e.g. NLC as well as trident.
- ✓ All-orders, *non*-perturbative effects.
- \checkmark Challenge for theory and simulations.
- $\checkmark\,$ First step toward cascades and high $\chi.$

Electrons in	scattering	pairs (trident)	Further motivation
000	000	00000	000●
Conclusions			

A trident experiment at $a_0 > 1$ and $\gamma \gg 1$

- ✓ Nonlinear effects.
- ✓ Quantum effects.
- ✓ Further into strong-field quantum regime ($\chi \simeq 1$).
- $\checkmark\,$ Can probe e.g. NLC as well as trident.
- ✓ All-orders, *non*-perturbative effects.
- \checkmark Challenge for theory and simulations.
- \checkmark First step toward cascades and high χ .

<u>Jobs</u>: 2×2 year EPSRC-funded postdocs available.

anton.ilderton@plymouth.ac.uk / ben.king@plymouth.ac.uk

Electrons in	scattering	pairs (trident)	Further motivation

Extra slides

• Light by light scattering.

ATLAS, Nat.Phys '17 [1702.01625]

- Internal d.o.f. can change: helicity flip Toll, PhD Thesis 1952 Dinu, Heinzl, Ilderton, Marklund PRD 89 (2014), arXiv:1312.6419
- Vacuum birefringence: induced probe ellipticity in strong field.

Heinzl et al, Opt.Commun. 267 (2006)

King et al NJP 14 (2012), Karbstein et al PRD 92 (2015)

Talk by Holger Gies

Motivation: intense lasers for BSM physics

• Lab based probes of Beyond Standard Model physics.

Talk by Selym Villalba-Chavez

• e.g. electron-scalar ALP coupling Talk by Ben King, poster by Barry Dillon

• Point is: new info. on QFT! Richer physics ...