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The Scale for a TeV Linear Collider

31 km

Today’s technology LC 
– a 31km tunnel:

Plasma Wakefield Technology LC:

The Luminosity Challenge:

4 km
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…and must do it for positrons too!

High-efficiency and beam quality

GeV/m accelerating gradient



FACET: A National User Facility based on high-energy beams and their 
interaction with plasmas and lasers

Primary Goal: 
• Demonstrate a single-stage high-energy plasma 

accelerator for electrons 
Timeline: 

• CD-0 2008 
• CD-4 2012, Commissioning (2011) 
• Experimental program (2012-2016) 

A National User Facility:  
• Externally reviewed experimental program 
• >200 Users, 25 experiments, 8 months/year operation 

Key PWFA Milestones:  
✓Mono-energetic e- acceleration 
✓High efficiency e- acceleration (Nature 515, Nov. 2014) 
✓First high-gradient e+ PWFA (Nature 524, Aug. 2015) 
✓Demonstrate required emittance, energy spread  
 (in review)
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20GeV, 3nC, 20µm3, e- & e+20GeV, 3nC, 20µm3, e- & e+

Premier R&D facility for PWFA: Only facility capable of e+ acceleration  
Highest energy beams uniquely enable gradient > 1 GV/m



FACET Celebration Party - April 2016
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FACET-II: A National User Facility Based on High-energy Beams and 
Their Interaction with Plasmas and Lasers
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10 GeV e- & e+ beams, 2nC/1nC @ 30/5Hz, ~µm emittance, Ipk > 10kA

 Start of RF Gun: 2018; Commissioning: 2019; 
User Programs 2019-2026

Develop brighter X-rays 
for photon science

Advance the energy frontier 
for future colliders



FACET-II Annual Science Opportunities Workshops and  
First Program Advisory Committee Meeting October 8-12, 2018
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2017 Workshop: 
64 Participants 
23 Institutions

User community is engaged 
with annual science workshops
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16 PI communicated intent to 
submit 27 proposals 



Plasma Density Profile

Active Engagement Between Facility & User Community – 
Illustrated by Design and QuickPIC Simulation of ‘First Experiment’
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FACET & FACET II Simulations

16

FACET  Two-Bunch FACET II Two-Bunch(Low εN)

FACET FACET-II
Key Upgrades: 

• Photoinjector beam 
• Plasma source with matching ramps 
• Differential pumping 
• Single shot emittance diagnostic 

Science deliverables: 
• Pump depletion of drive beam with high 

efficiency & low energy spread 
acceleration 

• Beam matching and emittance 
preservation 

Simulated Performance: 
• SLAC & UCLA groups iterated for 

optimal bunch separation, charge ratio, 
peak currents, plasma density and beam 
waist conditions

Flexibility of the photo-injector allows optimal beams for PWFA studies



PWFA Research Priorities at FACET-II 
Stage 1 Funded. Stage 2 & 3 will Fully Exploit the Potential of FACET-II
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Emittance Preservation with Efficient Acceleration 
FY19-21

High Brightness Beam Generation & Characterization 
FY20-22

Positron Acceleration 
FY21-24

Simultaneous Deliver of Electrons & Positrons 
FY22-25

• 10’s nm emittance preservation is necessary for collider apps 
• Ultra-high brightness plasma injectors may lead to first apps

• Positron Acceleration on Electron Beam Driven Wakefields

Stage 1 Stage 1

Stage 3Stage 2

• High-gradient high-efficiency (instantaneous) acceleration has 
been demonstrated @ FACET

• Full pump-depletion and 
Emittance preservation 
at µm level planned as 
first experiment

• Only high-current positron capability in the world for PWFA 
research will be enabled by Phase II

• Develop techniques for            
positron acceleration in PWFA stages

Gradual introduction of capabilities works well with level of demand for FACET-II



Extreme Beams: A Challenge and Opportunity!

• We know from experience – extreme beam densities developed at FACET and 
FACET-II turn materials into plasma physics experiments! 

• Allows experiments to access new regimes
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60 µm 

FACET-II will transition from 100 GeV/m to 1-100 TeV/m
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Example installation from KEK - ATF



FACET-II Beam will Access New Regimes

Low-emittance (state of the art photoinjector) and ultra-short (improved compression) 
beam will generate: 

• >300 kA peak current (~0.4 µm long) 
• ~100 nm focus by plasma ion column 
• ~1012 V/cm radial electric field (Es=1.3x1016 V/cm) 
• ~1024 cm-3 beam density
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Concept of an electron-beam-instability driven gamma-ray source

A dense bunch of high-energy electrons (green 
spheres) propagating in a plasma background 
breaks up into multiple filaments (green tubes) 
because of an electromagnetic instability, 
generating superstrong magnetic fields. The 
individual trajectories of the beam electrons are 
bent by the magnetic fields, causing synchrotron 
emission of gamma-ray photons (blue wavelets). 
Image courtesy of Max Planck Institute for 
Nuclear Physics 
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Current filamentation instability is observed and 
studied in a laboratory environment with a 60 MeV 
electron beam and a plasma capillary discharge. 
Multiple filaments are observed and imaged 
transversely at the plasma exit with optical transition 
radiation. 

B. Allen, et.al. Phys. Rev Lett. 2012



ILC Luminosity optimization
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Parameter Symbol [Unit] ILC (TDR) 
250 GeV CM

NpQED Collider 
[large-σz]

Beam Energy E [GeV] 125 125
Bunch Charge Q [nC] 3.2 1.4
Peak Current Ipk [kA] 0.4 1700
rms Bunch Length σz [µm] 300 0.1
rms Bunch Size σ*x,y [µm] 0.73, 0.008 0.01, 0.01
Pulse rate x # Bunches/pulse frep [Hz] x Nbunch 5 x 1312 700
Beamstrahlung Parameter χ av , χ max 0.06, 0.15 969, 1721
Beam Power P [MW] 2.6 0.12
Luminosity L [cm-2s-1] 3E+33 3E+33

L∝ Pb
Eb

δ BS

εny

Beam Power 

Beam Energy 

Luminosity:

Loss of energy associated 
with beamstrahlung

Normalized vertical 
emittance 

L = Pb
Eb

Nb

4πσ xσ y

Number of particles 
per bunch

Area of the beam



Intuitive explanation of the Non-perturbative strong field QED collider 
parameters
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Key challenge: radiative energy loss in field transition (if χ ≳ 1) prevents 
reaching χ ≫ 1 

•  Four (main) beam parameters: transverse σr and longitudinal σz bunch 
sizes; number of particles per bunch N; Lorentz factor γ

•  Lorentz invariance: only σz∗ = σz /γ relevant → three degrees of freedom

• we can simultaneously fulfill three constraints: 

NpQED Collider scale
• σz ≲ 100nm @ 100GeV 

• I.e., ≳ 100 pC per bunch

•
N ≥ 1

α 4 ~ 10
9

σ z
* ≤ ! c

σ r ~10 Nα! ≈10nm

χav ≈
5
12

Nα! c
2

σ rσ z
*

Quantum Parameter

αχ2/3 ≳ 1
reaching  fully  non-
perturbative regime

Radiation Probability

W ≈αχav
2/3 σ z

*

! c
W < 1

acceptable radiation 
loss

Disruption Parameter

D ≈
2Nα! cσ z

*

σ r
2

 D < 0.01
small disruption



Different Scales of Strong Field: Non-perturbative QED

Fully Non-perturbative QED: induced  mass of photon exceeds mass of 
electron due to strong external field (expansion parameter αχ2/3 > 1) 
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Future ~100GeV 
collider studies 

χ ! 1 χ ≫1χ ≪1

Experimentally approach regime where existing theory breaks down



Conclusion:

Ultrashort intense electron bunches can enable new science: 

• Gamma ray source through filamentation  

• requires 10% predicted FACET-II beam intensity 

• Beamstrahlung suppression (allows for >10x reduction in ILC beam power) 

• At 100 GeV ~100 nm (~5x shorter bunches compared to FACET-II 
beams) 

• Virtual particles dominated collisions (Non-perturbative QED) 

• 140pC, 10x10x10 nm3 beams (modified ILC final focus)
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