Trident pair production

Greger Torgrimsson

Friedrich-Schiller-Universität Jena and Helmholtz-Institut Jena

DESY, Hamburg, 22 August 2018

Victor Dinu and GT, Phys. Rev. D 97, no. 3, 036021 (2018)

Outline

Trident pair production

Baier, Katkov, & Strakhovenko (1972); Ritus (1972); Hu, Müller & Keitel (2010); Ilderton (2011); King & Ruhl (2013);

V. Dinu & GT (2017); King & Fedotov (2018); Mackenroth & Di Piazza (2018)

• $a_0 = \frac{eE}{m\omega} \gtrsim 1$: trident more than Compton × Breit-Wheeler

Model high-intensity lasers with pulsed plane waves

•
$$a_0 = \frac{eE}{m\omega} > 1 \rightarrow \text{treat field exactly}$$

•
$$eF_{\mu\nu}(x^+) = k_{\mu}a'_{\nu} - k_{\nu}a'_{\mu}$$

• Lightfront coordinates: $x^{\pm} = t \pm z$

•
$$k^2 = 0$$
, $k \cdot x = \omega x^+$, $k \cdot a(x^+) = 0$

- Pulsed plane waves: $a'(\pm \infty) = 0$
- Sol. to Lorentz force eq.

$$m\ddot{x}^{\mu} = eF^{\mu\nu}\dot{x}_{\nu}$$
: $\pi_{\mu}(x^{+}) := m\dot{x}_{\mu} = p_{\mu} - a_{\mu} + rac{2ap - a^{2}}{2k\cdot p}k_{\mu}$

Volkov solution and Furry picture

• Volkov:
$$(i\cancel{D} - m)\psi = 0$$
 $\psi(x) = \left(1 + \frac{\cancel{k}\cancel{a}}{2kp}\right)e^{-ipx - i\int_{x^+}^{x^+} \frac{2ap - a^2}{2kp}}$

- Furry picture: $H = H_{\text{"free"}}[a] + H_{\text{int}}[a]$
- Volkov solutions describe Lorentz force: $iD_{\mu} \varphi(x) = \pi_{\mu}(x^{\scriptscriptstyle +}) \varphi(x)$

Trident - two-step and one-step

Higher orders from sequence of first orders

Baier, Katkov, & Strakhovenko (1972); Ritus (1972); King & Ruhl (2013)

$$\left| \begin{array}{c} 2 \\ \end{array} \right| = \left| \begin{array}{c} 2 \\ \times \end{array} \right| \times \left| \begin{array}{c} 2 \\ \end{array} \right|^2$$

$$+$$
 "one-step" terms $= \mathbb{P}_{two} + \mathbb{P}_{one}$

Particle-in-cell simulations at high intensity

Review: Gonoskov et al. PRE (2015)

•
$$a_0 = \frac{eE}{m\omega} \gg 1$$
 \rightarrow $|\mathbb{P}_{one}| \ll \mathbb{P}_{two}$

• Corrections from \mathbb{P}_{one} for $a_0 > 1$

Direct and Exchange

Exchange of identical particles in final state

$$\begin{vmatrix} p_{1} & p_{2} \\ p_{1} & p_{2} \end{vmatrix} - (p_{1} \leftrightarrow p_{2}) \begin{vmatrix} 2 \\ p_{1} \end{vmatrix} + (p_{1} \leftrightarrow p_{2}) + \text{"cross term"} =$$
"direct part" $+$ "exchange part" $-\mathbb{P}_{1} + \mathbb{P}_{2}$

$$\text{"direct part"} \ + \ \text{"exchange part"} \ = \mathbb{P}_{dir} + \mathbb{P}_{ex}$$

• Notation: $\mathbb{P}_{dir} \neq \mathbb{P}_{one} = \mathbb{P}_{one}^{dir} + \mathbb{P}_{one}^{ex}$ $\mathbb{P}_{two} = \mathbb{P}_{two}^{dir}$

Direct and Exchange

- ullet \mathbb{P}_{ex} more difficult than \mathbb{P}_{dir}
- ullet \mathbb{P}_{ex} neglected in some previous studies
- Expect $|\mathbb{P}_{\mathrm{ex}}| \ll \mathbb{P}_{\mathrm{dir}}$ for $\chi \gg 1$ where $\chi := a_0 b_0 = \frac{eE}{m\omega} \frac{kp}{m^2}$
- But for how large χ?
- And what about $\chi \lesssim 1$?
- ullet Numerical and analytical calculation of \mathbb{P}_{ex} victor Dinu & GT (2017)
 - ullet $\mathbb{P}_{\mathrm{ex}} \sim \mathbb{P}_{\mathrm{dir}}^{\mathrm{one}}$ for $\chi \gg 1$

Lightfront quantisation

- $a_{\mu}(x^{+}), \pi_{\mu}(x^{+}), \varphi = e^{-ipx}f(x^{+})$
- Use $x^+ = t + z$ instead of t
- Different forms of dynamics

• x^+ : front form, lightfront quantisation $[\Phi(x), \Phi^{\dagger}(y)]_{x^+=y^+}$

For reviews see T. Heinzl and Brodsky, Pauli and Pinsky

- Used e.g. for non-perturbative QCD
- Lightfront quantisation + Furry picture for plane waves

Neville & Bohrlich 1971

Lightfront Hamiltonian

- LF Hamiltonian $H = P_+ = (P_0 + P_3)/2$ for evolution in $X^+ = X^0 + X^3$: $|\psi; X^+\rangle = T_+ e^{-i\int\limits_{-\infty}^{x^+} H_{\rm int}} |\sin\rangle$
- "Instantaneous" terms in H. $p^2=m^2$ in Ψ and $\ell^2=0$ in A_μ

$$H_{\rm int} = \frac{1}{2} \int \! \mathrm{d} \bar{x} \; ej A + \frac{e^2}{2} j_- \frac{1}{(i\partial_-)^2} j_- + e^2 \bar{\Psi} A \frac{\gamma^+}{4 i \partial_-} A \Psi \qquad j^\mu = \bar{\Psi} \gamma^\mu \Psi \; ,$$
 trident amplitude = $\qquad \qquad + \qquad \qquad +$

On-shell

- LF Hamiltonian formalism
- On-shell: $I^2 = 0 \implies I_+ = \frac{I_{\perp}^2}{4I_-}$
- Instantaneous terms
- x^+ ordered: $x^+_{\rm BW} > x^+_{\rm C}$
- o cf. two-step & one-step

- standard covariant formalism
- Start: off-shell I₊-integral
- LF gauge: $\frac{g_{\mu\nu} \frac{k_{\mu}l_{\nu} + l_{\mu}k_{\nu}}{kl}}{l^2 + i\varepsilon}$
- I_+ integral o terms with $heta(x_{
 m BW}^+-x_{
 m C}^+)$ and $\delta(x_{
 m BW}^+-x_{
 m C}^+)$

Pair production probability

Sum over momenta and spin

$$\mathbb{P} = \sum \begin{array}{c|c} p_3, \sigma_3 \\ p_2, \sigma_2 \end{array} - (p_1, \sigma_1 \leftrightarrow p_2, \sigma_2) \end{array} \right|^2$$

- $F_{\mu\nu}(x^+) \rightarrow \delta^3_{-,\perp}(p_1 + p_2 + p_3 p)$
- Integrate over Gaussian p_1^{\perp}, p_2^{\perp} integrals

•
$$P_{-} = P_{0} - P_{3} > 0 \rightarrow (p - p_{1} - p_{2})_{-} > 0$$

• Prob. density:
$$\mathbb{P} = \int_0^1 \mathrm{d} s_1 \mathrm{d} s_2 \theta (1 - s_1 - s_2) \mathbb{P}(kp, s_1, s_2), \quad s_i = \frac{p_{i-}}{p_-}$$

Exact probability for arbitrary field shape

LF formalism → 3 direct + 3 exchange terms

- Integrals over $\phi_i = kx_i = \omega x_i^+$. Long. momenta $s_i = \frac{kp_i}{kp}, \ q_i = 1 s_i$
- Symmetries: $\mathbb{P}^{22}_{\mathrm{ex}}$: $\phi_1 o \phi_2 o \phi_3 o \phi_4, s_1 o -s_0 o s_2 o s_3 o s_1$
- Compact expressions for arbitrary plane waves $a_{\perp}(x^{+})$

One-step two-step

$$\begin{array}{c|c}
\phi_1 & & & \phi_3 \\
\downarrow & & & & \downarrow \\
s_1 & s_0 & s_2 & -s_3 \\
\downarrow & & & & \downarrow \\
\phi_2 & & & & \downarrow \\
\phi_2 & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & \downarrow \\
&$$

• Effective mass:
$$\varphi_{21} \propto M^2 = \langle \pi \rangle^2$$
 $\theta_{ij} = \phi_i - \phi_j$ $\sigma_{ij} = \frac{\phi_i + \phi_j}{2}$

$$ullet$$
 $\mathbb{P}_C = \int \mathrm{d}^2\phi \dots e^{i\phi_{21}}$ $\mathbb{P}_{BW} = \int \mathrm{d}^2\phi \dots e^{i\phi_{43}}$

$$\bullet \ \theta(\theta_{42})\theta(\theta_{31}) = \theta(\sigma_{43} - \sigma_{21}) \left\{ 1 - \theta \left(\frac{|\theta_{43} - \theta_{21}|}{2} - [\sigma_{43} - \sigma_{21}] \right) \right\}$$

•
$$\mathbb{P}_{\mathrm{dir}}^{22} = \mathbb{P}_{\mathrm{two}} + \text{contribution to } \mathbb{P}_{\mathrm{one}}$$
 $\mathbb{P}_{\mathrm{two}} = \sum_{\mathrm{pol.}} \mathbb{P}_{C} \mathbb{P}_{BW}$

Two-step and one-step

Two-step and one-step separation:

LF separation:

Victor Dinu & GT PRD (2018)

• From now on: \mathbb{P}_{two} , \mathbb{P}_{one}^{dir} and \mathbb{P}_{one}^{ex}

$a_0 \gg 1$ and the locally constant field approximation

- Constant fields: $\mathbb{P}_{\text{two}} \sim (\Delta x^+)^2$ and $\mathbb{P}_{\text{one}}^{\text{dir}} \sim \Delta x^+$ Baier, Katkov, and Strakhovenko (1972); Ritus (1972); King and Ruhl (2013)
- $a_0=\frac{eE}{m\omega}\gg 1$: expand in $\frac{1}{a_0}$ $\mathbb{P}=a_0^2P_2+a_0P_1+P_0+\mathcal{O}(\frac{1}{a_0})$ Victor Dinu & GT PRD (2018)
- $\mathbb{P}_{\text{two}} = a_0^2 P_2 + \mathcal{O}(a_0^0)$ $\mathbb{P}_{\text{one}} = a_0 P_1 + \dots$
- Avoid large volume factors and include higher orders
- Both constant and non-constant fields
- Both \mathbb{P}_{dir} and \mathbb{P}_{ex}

Constant field, $a_0 \gg 1$ and $\chi \ll 1$

- Longitudinal momenta $s_i = kp_i/kp$ ($s_1 + s_2 + s_3 = 1$) for $\chi = 1/2$ and $\chi = 16$
- Use saddle-point approx. for $\chi \ll 1$

• Constant field:
$$\mathbb{P}_{\text{two}} \approx \alpha^2 \frac{(a_0 \Delta \phi)^2}{64} e^{-\frac{16}{3\chi}}$$
 $\mathbb{P}_{\text{one}}^{\text{dir}} \approx -\alpha^2 \frac{a_0 \Delta \phi \sqrt{\chi}}{16\sqrt{6\pi}} e^{-\frac{16}{3\chi}}$ $\mathbb{P}_{\text{one}}^{\text{ex}} \approx \frac{13}{18} \mathbb{P}_{\text{one}}^{\text{dir}}$

$$\mathbb{P}_{\mathrm{one}}^{\mathrm{dir}} pprox - lpha^2 rac{a_0 \Delta \phi \sqrt{\chi}}{16 \sqrt{6\pi}} e^{-rac{16}{3\chi}}$$

$$\mathbb{P}_{\text{one}}^{\text{ex}} \approx \frac{13}{18} \mathbb{P}_{\text{one}}^{\text{dir}}$$

 \bullet \mathbb{P}_{two} and $\mathbb{P}_{\text{one}}^{\text{dir}}$ agree with literature. $\mathbb{P}_{\text{one}}^{\text{ex}}$ is new.

V. Dinu & GT PRD (2018)

• \mathbb{P}_{one}^{ex} as important as \mathbb{P}_{one}^{dir}

Pulsed Fields with $a_0 \gg 1$ and $\chi \ll 1$

• Pulsed plane wave $a(\phi) = a_0 f(\phi), \ \phi = \omega x^+, \ f^{(3)}(0) = -\zeta$

•
$$\mathbb{P}_{\text{two}} = \alpha^2 \frac{\pi \sqrt{3}}{128} \frac{a_0^2 \chi}{\zeta} e^{-\frac{16}{3\chi}}$$
 $\mathbb{P}_{\text{one}}^{\text{dir}} = -\alpha^2 \frac{a_0 \chi}{64 \sqrt{\zeta}} e^{-\frac{16}{3\chi}}$ $\mathbb{P}_{\text{one}}^{\text{ex}} = \frac{13}{18} \mathbb{P}_{\text{one}}^{\text{dir}}$

 \bullet $\,\mathbb{P}_{\rm one}^{\rm ex}$ on the same order as $\mathbb{P}_{\rm one}^{\rm dir}$ in general for $a_0\gg 1$ and $\chi\ll 1$

$a_0 \sim 1$ and $\chi \ll 1$

• Sauter pulse $a'(\phi) = a_0 \operatorname{sech}^2 \phi$:

V. Dinu & GT PRD (2018)

$$\mathbb{P}_{\text{one}}^{\text{dir}} = -\frac{2}{\pi} \text{arctan} \sqrt{1 - \frac{a_0}{(1 + a_0^2) \text{arccot} a_0}} \mathbb{P}_{\text{two}} \qquad \mathbb{P}_{\text{one}}^{\text{ex}} = \frac{13}{18} \mathbb{P}_{\text{one}}^{\text{dir}}$$

$$\mathbb{P}_{\text{one}}^{\text{ex}} = \frac{13}{18} \mathbb{P}_{\text{one}}^{\text{dir}}$$

• $a_0 \sim 1$: $\mathbb{P}_{one}^{dir} \sim \mathbb{P}_{one}^{ex} \sim \mathbb{P}_{two}^{dir}$ $a_0 \gg 1$: $\mathbb{P}_{one}^{dir} \sim \mathbb{P}_{one}^{ex} \ll \mathbb{P}_{two}^{dir}$

$$a_0 \gg 1$$
: $\mathbb{P}_{\text{one}}^{\text{dir}} \sim \mathbb{P}_{\text{one}}^{\text{ex}} \ll \mathbb{P}_{\text{two}}^{\text{dir}}$

•
$$\mathbb{P} = ...e^{-\frac{8a_0}{\chi}[(1+a_0^2)\operatorname{arccot} a_0 - a_0]}$$

•
$$a_0 \gg 1$$
: $\mathbb{P} = ...e^{-\frac{16}{3\chi}}$

$$\bullet \ a_0 \ll 1 : \qquad \mathbb{P} \sim e^{-\frac{4\pi}{kp}} \sim |\tilde{a}(\tfrac{4\omega}{kp})|^2$$

Monochromatic field, $a_0 \sim 1$ and $\chi \ll 1$

- $a'(\phi) = a_0 \cos \phi$: $\mathbb{P}_{\text{two}} \sim N \mathbb{P}_{\text{one}}^{\text{dir}} \sim N \mathbb{P}_{\text{one}}^{\text{ex}}$
- $\mathbb{P} = \operatorname{prefactor} \exp\left\{-\frac{4a_0}{\chi}\left([2+a_0^2]\operatorname{arcsinh}\frac{1}{a_0}-\sqrt{1+a_0^2}\right)\right\}$ V. Dinu & GT PRD (2018)
- Compare with SLAC experiment:

$$\mathbb{P} \sim e^{-\frac{\sqrt{2}c}{\chi}}$$
 $c_{\rm SLAC} = 2.4 \pm 0.1 ({\rm stat.})^{+0.2}_{-0.6} ({\rm syst.})$ $c_{\rm we} \approx 2.46$

- Agreement
- However: too large error bars
- ullet and too close to perturbative limit $\mathbb{P} \sim a_0^{8/kp}$

$a_0 \gg 1$ and general χ

- $\quad \bullet \ \, \mathbb{P}^{ex}_{one} < 0 \text{ for all } \chi$
- $\quad \bullet \quad \mathbb{P}_{\text{one}}^{\text{dir}} < 0 \text{ for } \chi \lesssim 20$
- $|\mathbb{P}_{\mathrm{one}}^{\mathrm{ex}}| > |\mathbb{P}_{\mathrm{one}}^{\mathrm{dir}}|$ for $17 \lesssim \chi \lesssim 26$
- $ullet \mathbb{P}_{ ext{one}}^{ ext{dir}}\gg |\mathbb{P}_{ ext{one}}^{ ext{ex}}| ext{ for } \chi\gg 30$
- $\mathbb{P}_{\text{one}}^{\text{ex}}$ important up to quite large χ

Victor Dinu & GT PRD (2018)

Momentum spectra at $a_0 = 1$

• $\mathbb{P}(s)$ for a long pulse

- Victor Dinu & GT preliminary results
- circular polarization, $a_0 = 1$ and $b_0 = kp/m^2 = 0.5, 1, 2, 4, 8$:

linear polarization:

Far from LCF

• Exact for $a_0 = 1$

Victor Dinu & GT preliminary results

Locally constant field approximation

•
$$a_0 = 2$$
, $b_0 = 0.25, 0.5, 1, 2, 4, 8$

Victor Dinu & GT preliminary results

Conclusions

- $\bullet \ \, \text{Strong fields} \to \text{plane waves} \to \text{lightfront formalism} \\$
- ullet LF o compact ${\mathbb P}$ for arbitrary field shapes

V. Dinu & GT PRD (2018)

- \bullet All terms, both \mathbb{P}_{dir} and \mathbb{P}_{ex}
- $\bullet \ \mathbb{P}_{ex} \sim \mathbb{P}_{dir}^{one}$
 - Analytically for $\chi \ll 1$ and $a_0 \gg 1$ or $a_0 \sim 1$
 - Numerically for $a_0\gg 1$ and quite large χ
- Methods also useful for double nonlinear Compton scattering