All optical signatures from the quantum vacuum

Holger Gies

Friedrich-Schiller-Universität Jena & Helmholtz-Institut Jena

& Felix Karbstein, Christian Kohlfürst, Nico Seegert

PRD 97 (2018), 076002, [arXiv:1712.06450]; PRD 97 (2018), 036022, [arXiv:1712.03232]

Probing Strong-Field QED, DESY, Hamburg 21-23 August, 2018

All-optical ...?

Probing strong-field QED in **electron-photon** interactions

21-23 August 2018 DESY, Hamburg

All-optical ...?

virtual electron-positron fluctuations

QED: nonlinear γ self-interactions

Low-energy frontier

▷ typical energies: $E = \omega \simeq O(1)$ eV

$\ll m_{\rm e}$ electron mass scale

\implies Heisenberg-Euler regime:

(HEISENBERG, EULER 1936)

Folgerungen aus der Diracschen Theorie des Positrons.

Von W. Heisenberg und H. Euler in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

"[...] für den speziellen Fall berechnet, [...] in dem sich das Feld auf Strecken der Compton-Wellenlänge wenig ändert."

 Γ_{HE}

regime

 \neq e.g. $\gamma\gamma$ @ LHC

(AABOUD ET AL.[ATLAS]'17)

Wish list

- strong fields / high intensities
- high rep'rate / many photons
- efficient detectors / precision metrology

Wish list

- strong fields / high intensities
- high rep'rate / many photons
- efficient detectors / precision metrology
- (sufficient funding / many students)

Wish list

SIN

- high rep'rate / many photons
- efficient detectors / precision metrology
- (sufficient funding / many students)
- accurate theoretical predictions

A theory challenge

Commonly used strategies

 \triangleright linearized EoM: $F \rightarrow F + f$

$$0 = \partial_{\mu}f^{\mu\nu} - \frac{8}{45}\frac{\alpha^{2}}{m^{4}}F_{\alpha\beta}F^{\mu\nu}\partial_{\mu}f^{\alpha\beta} - \frac{14}{45}\frac{\alpha^{2}}{m^{4}}F_{\alpha\beta}F^{\mu\nu}\partial_{\mu}f^{\alpha\beta} + \mathcal{O}((F^{4}/m^{8})\partial f)$$

▷ general strategy: correlation functions

birefringence

 γ merging, wave mixing, γ splitting, scattering

(Toll'54;Baier,Breitenlohner'67;Adler'71;...HG,Karbstein,Seegert'16)

In principle: known in HE limit

In practice: exp. growth of complexity

 \triangleright high-intensity lasers, strong magnets, XFELs, pulsars, \ldots

 \simeq classical fields *F*

$$\triangleright$$
 QED induced signals $\sim \alpha \left(rac{eF}{m^2}
ight)^2$

111.

(birefringence)	\rightarrow	polarization flipped γ 's	
enhanced off-axis components	\rightarrow	scattered γ 's	$\rangle \simeq quantum$
high-frequency components	\rightarrow	merged γ 's	J

 \implies vacuum emission picture

(KARBSTEIN, SHAISULTANOV'15)

[MAGE CREDIT: WWW.POLYTECHNIQUE.EDU]

(KARBSTEIN, SHAISULTANOV'15)

 \implies vacuum emission picture

(KARBSTEIN, SHAISULTANOV'15)

 \implies induced current

$$j^{\mu}_{\rm HE}[\mathbf{A}] = \frac{\delta \Gamma_{\rm HE}[\mathbf{A}]}{\delta A_{\mu}}$$

▷ emission amplitude

(Yakovlev'67;Karbstein,Shaisultanov'15)

$$\mathcal{S}_{(p)}(\mathbf{k}) = \langle \gamma_{(p)}(\mathbf{k}) | \int d^4x \, j^\mu_{\mathsf{HE}}[\mathbf{A}](x) \, \hat{a}_\mu(x) \, |0
angle$$

\implies differential photon number at detector

$$dN_{(p)}({f k})=rac{d^3k}{(2\pi)^3}\,|S_{(p)}({f k})|^2$$

Fermi's Golden Rule

Vacuum emission

▷ emission amplitude

(YAKOVLEV'67;KARBSTEIN,SHAISULTANOV'15)

$$S_{(p)}(\mathbf{k}) = \underbrace{\langle \gamma_{(p)}(\mathbf{k}) |}_{\text{signal}} \int d^4x \underbrace{j_{\text{HE}}^{\mu}[A](x)}_{\text{classical}} \underbrace{\hat{a}_{\mu}(x)}_{\text{quantum}} \underbrace{|0\rangle}_{\text{vacuum}}$$

 \implies differential photon number at detector

$$dN_{(p)}({f k}) = rac{d^3k}{(2\pi)^3} |S_{(p)}({f k})|^2$$

Fermi's Golden Rule

All-optical quantum vacuum signatures ...

 $ightarrow \dots$ from a simple Fourier transform

$$S_{(p)}(\mathbf{k}) = rac{\epsilon^{*}_{(p)\mu}(\mathbf{k})}{\sqrt{2k^{0}}} \int d^{4}x \; e^{ikx} j^{\mu}_{\mathsf{HE}}[A](x)$$

• analytically accessible for idealized fields

const., plane-wave, paraxial beams, etc.

(KARBSTEIN, HG, REUTER, ZEPF'15)

fast algorithms available

straightforward discretization

FFT

physical scales

All-optical quantum vacuum signatures: examples

▷ Collision of 2 optical pulses

(Tommasini,Michinel'10) (King,Keitel'12) (HG,Karbstein,Kohlfürst'17)

▷ Example: 2 identical PW-class lasers:

W = 25J $f^{\#} = 1$ (diff. limit) $\tau = 25 fs$ $z_R = \pi \lambda$ $\lambda = 800 nm$ paraxial Gaussian

Example: colliding pulses

...

$$\triangleright$$
 collision under $\vartheta_2 = 135^{\circ}$

(HG,Karbstein,Kohlfürst'17)

emission characteristics

signal γ 's swamped by background

Example: colliding pulses

 \mathbb{C}

 \triangleright collision under $\vartheta_2 = 175.8^{\circ}, \perp$ polarization

(HG,KARBSTEIN,KOHLFÜRST'17)

▷ emission characteristics

signal outside pump beams

$\gamma\,\gamma$ scattering at the high-intensity frontier

▷ collision of 3 pulses

(Moulin,Bernard'02) (Lundstrom et al.'05; Lundin et al.'06) (HG,Karbstein,Kohlfürst,Seegert'17) (King,Hu,Shen'18)

 $W_1 = 25J$ $\lambda_1 = 800nm$ $\tau = 25fs$

 $W_{2,3} = 6.25J$ $\lambda_1 = 400$ nm $\tau = 25$ fs $f^{\#} = 1$ (diff. limit) $z_{R} = \pi \lambda$ paraxial Gaussian

$\gamma\,\gamma$ scattering at the high-intensity frontier

▷ collision of 3 pulses (planar config.)

(HG,Karbstein,Kohlfürst,Seegert'17)

$\gamma\,\gamma$ scattering at the high-intensity frontier

▷ collision of 3 pulses (planar config.)

(HG,Karbstein,Kohlfürst,Seegert'17)

Conclusions

Strong-field QED in Heisenberg-Euler regime

...towards first discovery experiments

· All-optical signatures from the quantum vacuum

... experimental & theoretical control

Vacuum emission picture

 $\dots conceptually, analytically, numerically simple$