

Laser-wakefield experiments to probe high-field QED

Gianluca Sarri

School of Mathematics and Physics, Queen's University Belfast, UK g.sarri@qub.ac.uk

Main Collaborators

Gianluca Sarri

Introduction

⇒ Radiation Reaction is one of the oldest and most fundamental problems in electromagnetism: How do we correctly model the electron dynamics if we include radiative losses?

0. Classical Lorentz force du^{u}

 $m\frac{du^u}{ds} = eF^{uv}u_v$

X No energy loss

Damping force (radiation reaction term)
Classical renormalisation (point-like electron)
Runaway solutions! (diverging acceleration even without external field)

2. LL Equation

$$m\frac{du^{u}}{ds} = eF^{uv}u_{v} + \frac{2}{3}e^{2}\left(\frac{e}{m}(\partial_{\alpha}F^{uv})u^{\alpha}u_{v} - \frac{e^{2}}{m^{2}}F^{uv}F_{\alpha v}u^{\alpha} + \frac{e^{2}}{m^{2}}(F^{\alpha v}u_{v})(F_{\alpha \lambda}u^{\lambda})u^{u}\right)$$

No runaway solutionsValid in classical relativity

 $\begin{array}{l} \lambda >> \alpha \lambda_{\rm C} \ \ ({\rm localised wavefunction}) \\ F << F_{\rm cr} / \alpha \ ({\rm classical \ critical \ field}) \end{array}$

Gianluca Sarri

Slide 2/16

Quantum Radiation Reaction

⇒ The classical treatment of radiation reaction neglects three main additional phenomena:

1. The energy of a single emitted photon can not exceed that of the electron

3. Production of electron-positron pairs (important only for $\chi \ge 1$)

QUEEN'S

NIVERSITY

Current status

Current status

The general setup

Electron-laser collisions

A low-intensity experiment $(a_0 \sim 2, \gamma_e \sim 1000, \chi \sim 0.01)$

Experimental setup

Gianluca Sarri

QUEEN'S

BELFAST

NIVERSITY

Slide 7/16

γ-ray spectra

- Gamma-rays with energy per photon reaching **15 18 MeV**.
- Signal drops to zero if artificial temporal delay is introduced and it significantly decreases if the beams are spatially misaglined.
- Measured yield and energy agrees with analytical calculations for a₀ = 2 indicating onset of **non-linear Thomson scattering.**
- Measured maximum divergence of **2.5 mrad.**
- Source size of ~30 microns
- Calculated brightness of ~10²⁰ photons/s/mm²/mrad² x 0.1% BW

G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014).

D. Corvan et al., Rev. Sci. Instrum. 85, 065119 (2014).

D. Corvan et al., Opt. Express 24, 3127 (2016).

NEXT GENERATION OF MULTI-MEV γ-RAYS

A high-intensity experiment $(a_0 \sim 10, \gamma_e \sim 4000, \chi \sim 0.2)$

What do we see?

Gianluca Sarri

Slide 10/16

What do we see?

Slide 11/16

Collision diagnostic

Gianluca Sarri

Slide 12/16

Collision diagnostic

Slide 13/16

Comparison with theoretical models

Why are the semiclassical and QED model not reproducing the data exactly?

Why are the semiclassical and QED model not reproducing the data exactly?

OR, we could be in a situation where the **constant cross-field approximation** is not strictly valid

Conclusions and Outlook

- First experimental observation of high-field QED phenomena in a fully optical setup obtained at the Central Laser Facility
- For the next steps we need: A. Higher laser intensities
 - B. Improved pointing and spectral stability of electron beams
 - C. Higher electron energy

Conclusions and Outlook **VIVERSITY**

- First experimental observation of high-field QED phenomena in a fully optical setup obtained at the Central Laser Facility
- For the next steps we need: A. Higher laser intensities
 - B. Improved pointing and spectral stability of electron beams
 - C. Higher electron energy

Gianluca Sarri

QUEEN'S

Conclusions and Outlook NIVERSITY

- First experimental observation of high-field QED phenomena in a fully optical setup obtained at the Central Laser Facility
- For the next steps we need: A. Higher laser intensities
 - B. Improved pointing and spectral stability of electron beams
 - C. Higher electron energy

QUEEN'S

SFI FAST

- European consortium for a plasma-based accelerator of 5 GeV electron beams of industrial quality
- High-field QED studies proposed as a pilot application

- **Extreme-Light Infrastructure** Nuclear Pillar
- $2 \ge 10$ PW laser beams
- First commissioning experiments early 2019

New roadmap for research in wakefield acceleration in the UK

Thanks for your attention!

Gianluca Sarri

g.sarri@qub.ac.uk

References:

- G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014)
- D. J. Corvan et al., Rev. Sci. Instrum. 85, 065119 (2014)
- D. J. Corvan et al., Opt. Expr. 24, 3127 (2016)
- G. Samarin et al., J. Mod. Opt. 65, 1362 (2018)
- K. Poder et al., Phys. Rev. X 8, 031004 (2018)
- J. Cole et al., Phys. Rev. X 8, 011020 (2018)