HICS - High Intensity (strong field) Compton scattering

- Created parameter sets a "LUXE/ξ2" (FACET II "special" laser), and a "LUXE/HIξ" (ANGUS type)
- Increasing ξ increases the HICS rate, but suppresses the photon energy (the mass shift). LUXE/HIξ, only smooth multiphoton edge visible
- Optimise ξ need energetic enough photons for pair production, trade off between photon rate and photon energy
- Compare experiments.. LUXE/§2 nigher beam energy than FACET II. ELI-NP not competitive for HICS
- TODO: linear polarisation, beyond IPW finite pulse length

Experiment	$\lambda(nm)$	E_{laser}	focus	pulse	$E_{e^-}(GeV)$	ξ	χ
SLAC E144	527/1053	1 J	50 μm^{2}	1.88 ps	46.6	0.66	0.28
LUXE/ξ2	527 /1053	2 J	$100 \ \mu m^2$	0.05 ps	17.5	2	0.63
LUXE/ΗΙξ	800	5 J	$100~\mu m^2$	0.02 ps	17.5	7.7	1.6
FACET II	527 /800/1053	1 J	64 μm^{2}	0.04 ps	15	2	0.54
ELI-NP	1053	2.2 J	$50 \mu m^{2}$	0.022 ps	0.750	9.25	0.06

 ξ is laser intensity parameter, χ is electron recoil parameter

$$\xi \equiv \eta \equiv a_0 = rac{e|E|}{\omega m}, \quad \chi_{\rm i} = rac{\xi k \cdot p_{\rm i}}{m^2}$$

HICS - Mass shift

Decay rate proportional to

$$\sum_{\mathsf{n}} \delta^{(4)} \left[p_{\mathsf{i}} + k \frac{\xi^3}{2\chi_{\mathsf{i}}} + nk - p_{\mathsf{f}} - k \frac{\xi^3}{2\chi_{\mathsf{f}}} - k_{\mathsf{f}} \right]$$

- Momentum conservation is a sum over external field photon contributions, nk
- Even for n = 0 there is an irreducible contribution

$$p_{\rm i} + k \frac{\xi^3}{2\chi_{\rm i}} \to p_{\rm i}^2 = m^2(1 + \xi^2)$$

Manifests in Compton edge shift

$$rac{\omega_{\mathsf{f}}}{\epsilon_{\mathsf{i}}-\omega_{\mathsf{f}}} \leq rac{2nk \cdot p_{\mathsf{i}}}{m^2(1+\xi^2)} \ \mathsf{c.f.} \ rac{2nk \cdot p_{\mathsf{i}}}{m^2}$$

- Significant part of electron energy taken up by electron motion in the field/dispersive vacuum. Less energy available for radiated photon
- $\circ \ \ \xi^2 \sim 1 \ {\rm large\ compared\ to}\ \frac{k\cdot p_{\rm i}}{m^2} \approx 0.1.$ Big shift! ...in principle
- Real bunch collision smears the edge recover with cuts?

HICS with mass shift for LUXE and E144

IPstrong monte-carlo, HICS for LUXE/£2

Final electron energy (GeV)

OPPP - strong field pair production

- In a world where we are in control of initial state photon energy...
- The produced positron spectra is smooth, maximum at about half the photon energy
- Total OPPP rate is much better with higher laser intensity (and higher photon energy)
 - Pair must be created with the mass shift

$$n \ge \frac{m^2(1+\xi^2)}{k \cdot k_{\mathsf{i}}}$$

...so another way to detect mass shift?

Minimum laser photons needed for OPPP

Positron spectra for OPPP, alone

Total OPPP rate for LUXE with different ε

2 step trident - HICS + OPPP

This is the effective way pairs are produced (to 1st order!)

$$\circ \ \ \frac{\mathrm{d}\Gamma_{\mathrm{trident}}}{\mathrm{d}\omega_{\mathrm{f}}} = \frac{\mathrm{d}\Gamma_{\mathrm{HICS}}}{\mathrm{d}\omega_{\mathrm{f}}} \times \Gamma_{\mathrm{OPPP}}(\omega_{\mathrm{f}})$$

- Trident rate several orders lower than OPPP. Fortunately, we have a lot of electrons... match the beam to laser spot, given ξ constraints
- Estimate 10⁷ interactions per bunch crossing (E144)... total rate VERY *ξ* dependent
- Total positron rate dependence on ξ will start to decrease somewhere between ξ=1 and ξ=3
- Will produce plot of positron rate versus intensity (with ξ beyond that in the literature)

HICS, OPPP, 2 step trident

The trident process.