

Rons Tier I SRM survey

Ron's SRM survey (Tier I's only)

With replies from
CNAF (Luca)
BNL (Pedro)
Fermi (Jon)
Sara (Ron)
fzk (Jos)
RAL (Shaun)

Rons Tier I SRM survey

Ron's Questions

Problems with current srmv2.2 spec and implementation

What do you think is exactly wrong with the SRM v2.2 spec?
What issues do you see at the moment with the current SRM implementations? Please
specify what implementation you are running.

How could these issues be solved, do you think?
What features do you think are necessary or useful in the current SRM
implementations and should be retained?
What features do you think are not necessary?

SRM replacement

If there would be a chance to come up with a something new, replacing the SRM.
What functionality should it possess apart from put and get and namespace
operations?
Are there certain implementation features that it should possess?
If, in order to have an efficient implementation, it would be necessary to have a
SRM replacement interface that would differ from implementation to implementation,
would this be acceptable?

Rons Tier I SRM survey

Pedro Salgado (BNL, dCache)

Multiple SRM servers for load balancing

SRM should protect back-end (name-service)

Maybe partitioning by activity

for me, GSI is a burden specially for read operations and it seems to
be one of the bottlenecks on dCache's SRM server.

there should be a main API that each implementation should respect but
if a particular implementation wanted to provide more methods, I think
they should be allowed to.

Performance :

Future :

Rons Tier I SRM survey

Jon Bakken (Fermi, dCache)

What do you think is exactly wrong with the SRM v2.2 spec?
The spec is new enough that some items are under-defined
and open to interpretation between the various providers.
Choice of authentication protocol may not be the best
choice today. Standard TLS may be a better choice today.
The spec is complex, only a small subset is really needed.
The
extra requirements have caused many problems and
distracted from stabilizing the core requirements.

Rons Tier I SRM survey

Jon Bakken (Fermi, dCache)

What issues do you see at the moment with the current SRM
implementations? Please specify what implementation you are running. How
could these issues be solved, do you think?

dCache implementation problems only

Current version is not scalable. This is being solved by introducing a
horizontal load balancing SRM server.
If there are problems, diagnosing the issue is difficult. Reporting of
errors is not very good.
Recovery from errors does not work well.
The configuration is complex and documentation is lacking in some cases.
Underlying dCache problems manifest themselves as SRM problems.
(pnfs overloading for example)

Rons Tier I SRM survey

What features do you think are necessary or useful in the current
SRM implementations and should be retained?

Anything already written that does not hinder performance should be
retained.

What features do you think are not necessary?

We don't use Space Management. Access latency, retention policy, etc
are all concepts that do not belong to a srm system.
Recursive ls is a dangerous idea.
Auto directory creation demonstrates a lack of planning and has created
a mess.

Jon Bakken (Fermi, dCache)

Rons Tier I SRM survey

Jon Bakken (Fermi, dCache)

SRM replacement:

If there would be a chance to come up with a something new,
replacing the SRM. What functionality should it possess apart from put
and get and namespace operations?

We need the copy function for performance of wan transfers.
We need access control for some operations (srm-bring-online should be
limited for example)

If, in order to have an efficient implementation, it would be
necessary to have a SRM replacement interface that would differ from
implementation to implementation, would this be acceptable?

No, we need a common interface or we should drop the whole idea.

Rons Tier I SRM survey

Jos van Wesel (gridKa,Scc, dCache)

SRM and possible improvements
- What do you think is exactly wrong with the SRM v2.2 spec?

implements to many features
forms a non scalable bottleneck

- What issues do you see at the moment with the current SRM implementations?
Please specify what implementation you are running.
FZK uses dCache

its slowing down the dCache system responses
it takes a huge toll on cycles on the SRM machine
it introduces DB inconsistencies between subcomponents of the system

- How could these issues be solved, do you think?
reduce the number of SRM features

- What features do you think are necessary or useful in the current SRM
implementations and should be retained?
 remote authenticated access to the SE

Rons Tier I SRM survey

What features do you think are not necessary?
 o spacetokens

SRM replacement:
If there would be a chance to come up with a something new, replacing the SRM.
What functionality should it possess apart from put and get and namespace
operations?
 o The new interface would be MRS: Mass Reversed Storage :-)

Are there certain implementation features that it should possess?
The MRS should be able to exchange its capabilities and features with clients so
clients stay upward and downward compatible.
MRS implementations should be stateless

If, in order to have an efficient implementation, it would be necessary to have a
SRM replacement interface that would differ from implementation to
implementation, would this be acceptable
 o No

Jos van Wesel (gridKa,Scc, dCache)

Rons Tier I SRM survey

Luca dell'Agnello (CNAF,SToRM, CASTOR)

Problems with current srmv2.2 spec and implementation:

- What do you think is exactly wrong with the SRM v2.2 spec?
It's hard to say from our (i.e. storage provider) point of view what is exactly
wrong. From our experience we can say that some of the requested functionalities
are never used in practice such as the additional degree of freedom of space-
tokens respect to SURLs.
- What issues do you see at the moment with the current SRM implementations?
Please specify what implementation you are running. How could these issues be
solved, do you think?
At CNAF we have currently two different storage systems: StoRM (for D1T0
and D1T1) and Castor (for D0T1).
For StoRM we would like to have the support for multiple back-ends (currently only
multiple front-ends are supported) in order to enable a full fail-over mechanism.
Additional points are: an administration tool (mainly a configuration utility) and a
monitoring tool for the service (presently we use the standard lemon/nagios tools
and we parse the log files). In any case there are no significant issues related to
StoRM.

Rons Tier I SRM survey

Luca dell'Agnello (CNAF,SToRM, CASTOR)

- What issues do you see at the moment with the current SRM implementations?
Please specify what implementation you are running. How could these issues be
solved, do you think?

The use of Castor srm end-points is much lower than those of StoRM;
Anyway in this case the issues generally raise from the Castor system
rather than from the SRM layer itself.

- What features do you think are necessary or useful in the current SRM
implementations and should be retained?

put/get/namespace operations.
the neutrality respect to the transfer protocols offered by the underlying
storage system and we should avoid the temptation of the unique protocol (we do
not believe xrootd is the protocol....).

- What features do you think are not necessary?

As mentioned above, we think that the degree of freedom given by the space-

Rons Tier I SRM survey

nother point to retain from the current srm specs is the neutrality respect to the transfer protocols offered by the underlying storage system and we should avoid the temptation of the unique protocol (we do
not believe xrootd is the protocol....).

Rons Tier I SRM survey

Luca dell'Agnello (CNAF,SToRM, CASTOR)

SRM replacement:

- If there would be a chance to come up with a something new, replacing
the SRM. What functionality should it possess apart from put and get and
namespace
operations?

In any case, any future replacement (or more likely a new version of the
srm specs) should not interfere with the functionalities of the
underlying storage
system. A typical case is given by a cluster file-systems (such as GPFS
or Lustre) which natively aggregate logical volumes in a unique namespace.
Moreover some functionalities (such as the permission enforcement)
should be based on the functionalities offered by the underlying storage
system.

In a few words: keep it simple as possible.

Rons Tier I SRM survey

Luca dell'Agnello (CNAF,SToRM, CASTOR)

- Are there certain implementation features that it should possess?

Besides put/get/namespace operations, a quota management system per VO would be
desidered (i.e. the VOmaneger can manage, via srm, the storage space assigned to
a group)

- If, in order to have an efficient implementation, it would be necessary to have a
SRM replacement interface that would differ from implementation to
implementation, would this be acceptable?

ABSOLUTELY NOT !!

Rons Tier I SRM survey

Problems with current srmv2.2 spec and implementation:
- What do you think is exactly wrong with the SRM v2.2 spec?

Too many interfaces - space management should be outside scope
Too many 'concepts', and the useful ones are used in the wrong place. Specifically I
would not use accessLatency/transferMode, retentionPolicy is useful only on PUT
requests, and FileLocality only useful on Ls requests
Far too many optional parameter can be passed in to most operations, making
maintenance harder and allowing more scope for users to make mistakes.

- What issues do you see at the moment with the current SRM implementations?
Please specify what implementation you are running. How could these issues be solved, do
you think?

(With developers hat on) - no problems at all ;)
Can be difficult to configure w/o expert knowledge
Restricting access to space tokens difficult/impossible to set up
GSI certificate decoding very CPU intensive; meaning good h/w required
Difficult to trace requests from the SRM into CASTOR

Shaun De Witt (RAL, CASTOR)

Rons Tier I SRM survey

Shaun De Witt (RAL, CASTOR)

- What features do you think are necessary or useful in the current SRM
implementations and should be retained?

Transfer and namespace operations. Space interrogation (GetSpaceMetadata,
GetSpaceTokens)

- What features do you think are not necessary?

Pinning (can be achieved using Disk1Tape1 + ReleaseFiles)
Space Management
BringOnline (IMO could just as easily be done using Get)

Rons Tier I SRM survey

Shaun De Witt (RAL, CASTOR)

SRM replacement:

- If there would be a chance to come up with a something new, replacing
the SRM. What functionality should it possess apart from put and get and
namespace operations?

Could try and take charge of the transfer, so the whole process could be within the
scope of the new method.
Reduced security overhead to allow use of less performant hardware

- Are there certain implementation features that it should possess?

Aside from the current transfer and namespace operations
fairshare for shared SRMs

Rons Tier I SRM survey

Shaun De Witt (RAL, CASTOR)

- If, in order to have an efficient implementation, it would be necessary to have a SRM
replacement interface that would differ from implementation to implementation, would
this be acceptable?

Yes and No;
for non-knowledgeable user anything dCache, castor, gpfs or whatever in the interface
should be removed even if it means the storage system may not behave optimally for
knowledgeable users hints to the back end storage system are useful.
Much as I hate to say it, a simple basic interface and the use of keyword/value pairs
seems like the optimal solution

Rons Tier I SRM survey

Ron Trompert (Sara, dCache)

- What do you think is exactly wrong with the SRM v2.2 spec?

It is far too complex for the relatively simple use cases it has to cater for. It is far
too bloated. Complexity is the enemy of reliability. This is what we have seen since we
run srm v2.2.
Things are not defined well enough leading to different interpretations among
developers. The ONLINE, NEARLINE issue is a good example of this

Rons Tier I SRM survey

- What issues do you see at the moment with the current SRM
implementations? Please specify what implementation you are running.

The problems we see is that we are not able to protect our srm server from abuse by naive users.
Only this week our srm got get turl request for rfio at a rate of 170 Hz causing the load on our
srm server to go though the roof. The srm managed to survive though due to the fact that we
have set all retries to zero. We banned the culprit users from gPlazma but that did not help much
because rejecting the requests and producing all these tracebacks in the catalina.out file also
caused a high load on the machine. Things are not defined well enough leading to different
interpretations among developers. The ONLINE, NEARLINE issue is a good example of this.
Lack of scalability.
The SRM spec is only partly implemented which renders, for example, a storage class as T1D1
useless. By the way, the pin lifetimes supplied to srmbringOnline and srmPrepare ToGet are
integers. This would mean that it would be possible to pin a file for 68 years which is a pretty
good aproximation of T1D1. So why bother to have t1d1 at all.
This is not so much a problem for just SRM itself but for datamanagement in general. The
experiment frameworks do brokering with their data transports, the FTS does brokering and the
srm does brokering. This may lead to mysterious behaviour which is hard to understand for site
admins trying to track down problems. Since we are dealing with data transport here so another
complicating factor is that their are more than one site involved, making debugging even more
difficult.

Ron Trompert (Sara, dCache)

Rons Tier I SRM survey

Ron Trompert (Sara, dCache)

- What features do you think are necessary or useful in the current SRM
implementations and should be retained?

put/get and namespace operations should be retained
srm is useful as a load balancer over gridftp, (gsi)dcap or xrootd servers
The ability to issue bulk stage requests. This is something that the other protocols are not able to
provide.
The ability for a client to specify the access-latency in a uniform way for the different storage
systems

Rons Tier I SRM survey

- What features do you think are not necessary?
Space reservation is useless
In the dCache setting a space token is useless because you can achieve the same thing by copying
files to different directories. But I can imagine that it is useful to be able to flag files so that
they will be copied to a certain tape set. This way you would have a uniform way to do that with
the different storage systems.
T1D1 is useless
Recursive srmLs is a time bomb. This has no place in peta scale storage systems. srmLs should only
work on a single file or single directory (non-recursively). Considering the fact that we will have
directories with more than a million files in it, I would argue to place an upper limit to the number
of results returned doing an srmLs on a directory.

Ron Trompert (Sara, dCache)

Rons Tier I SRM survey

Ron Trompert (Sara, dCache)

- If there would be a chance to come up with a something new, replacing
the SRM. What functionality should it possess apart from put and get and
namespace operations?

A light weight interface to storage systems containing necessary functionality the
other protocols do not provide. I think that one of the reasons that the road for srm
v2.2 implementation has been so rough is that it needed to be implemented in already
existing storage systems. It did not really fit well (probably an understatement) with
the existing storage systems. A far less rich interface would probably be a lot easier
to implement into existing systems.

Rons Tier I SRM survey

Ron Trompert (Sara, dCache)

- Are there certain implementation features that it should possess?
put, get with load balancing over the servers providing the transfer protocols and
namespace operations
bulk staging
file pinning and unpinning
the ability to specify accesslatency for a client. Hereby I deliberately do not mention
retention policy since this has no added value. Having only one tape copy of a file like
we have for our HEP VOs hardly qualifies as custodial storage. Users are interested in
how fast the data access is. The quality of the storage should be part of an
agreement the VOs have with the sites but does not need to be included in an SRM
spec.

Rons Tier I SRM survey

Ron Trompert (Sara, dCache)

- If, in order to have an efficient implementation, it would be
necessary to have a SRM replacement interface that would differ from
implementation to implementation, would this be acceptable?

If there is no other way, there is no other way but preferably not. If it is not
possible to have a uniform, functional, stable, scalable and performing srm
implementation we should throw it over board altogether and just be happy with xrootd
:-)

Rons Tier I SRM survey

Summary

Problems with current srmv2.2 spec and implementation:
- What do you think is exactly wrong with the SRM v2.2 spec?

Protocol too complicated, too many features.
Protocol open to different interpretation.
GSI protocol instead of standard SSL.
Some functions are not used in practice.

- What issues do you see at the moment with the current SRM implementations?
Please specify what implementation you are running. How could these issues be solved, do
you think?

dCache : SRM is not scalable yet.
dCache and Castor : SRM problems mostly are back-end problems
dCache and Castor : difficult to configure
dCache and Castor : problem diagnositic is difficult.

Rons Tier I SRM survey

Problems with current srmv2.2 spec and implementation:

- What features do you think are necessary or useful in the current SRM
implementations and should be retained?

Anything already written that does not hinder performance should be
retained.
remote authenticated access to the SE
put/get/namespace operations.
Space interrogation (GetSpaceMetadata, GetSpaceTokens)
the neutrality respect to the transfer protocols offered by the underlying storage
system and we should avoid the temptation of the unique protocol (we do not believe
xrootd is the protocol....).

Summary

Rons Tier I SRM survey

Summary

Problems with current srmv2.2 spec and implementation:

- What features do you think are not necessary?

Space Management.
Access latency, retention policy, etc are all concepts that do not belong to a
srm system.
Recursive ls is a dangerous idea.
Auto directory creation demonstrates a lack of planning and has created a
mess.
Bring Online
T1D1 is useless

Rons Tier I SRM survey

SRM replacement

Protection for space
exchange its capabilities and features with clients so clients stay upward and
downward compatible
coscheduling would be required (FTS), We need the copy function for
performance of wan transfers.
The ability for a client to specify the access-latency in a uniform way for the
different storage systems
Any new functionality should be based on the features of the underlying storage
system and should be orthogonal.

If, in order to have an efficient implementation, it would be necessary to have a SRM
replacement interface that would differ from implementation to implementation, would this be
acceptable?

NO

Summary

