Industry meets SRM

DESY, IT / Grid Computing Deutsches Elektronen-Synchrotron

bjoern.boettcher@desy.de

TEChnische Universität Hamburg-Harburg

The Parallel Computing Group Hamburg University of Technology

B.Boettcher@tu-hamburg.de

Today's Menu Card

Aperitif

New Directions in Web Computing

Entrée
New Directions in Web Storage

Main CourseCloud Storage Efforts

DessertCloud Storage and SRM

New Directions in Web Computing

Cloudy Grids

"We now believe that **practical systems** will **inevitably mix** Web 2.0 and **Clouds with Grid**/Web

Services,..." (Geoffrey Fox, Community Grids Laboratory, Indiana University)

lan Foster, Yong Zhao, Ioan Raicu, Shiyong Lu

Cloud vs. Grids

- Cloud: Provide interfaces:
 - syntactically simple,
 - semantically restricted and
 - high-level
- Grid: Level of exposed detail is too great!
 - e.g., Web-Services are just too fine-grained
 - need abstractions to hide levels of detail and provide functionality in a simple way

Web 2.0

 no precise definition, but it is operationally defined by a set of technologies (AJAX etc.)

- developments include cloud systems which supports distinctive Grid features
 - distributed storage and
 - computing
- from the developer's point of view
 - provide much simpler programming, resource allocation, and security models

Web 2.0 Architecture

Sample googled Grid Architecture

Web 2.0

- has commercial site which improves quality
- build portals corresponding to audience
- supports a similar architecture to Web services
- the communicatory nature makes interface information readily available
- it has proven to be a remarkably successful realization of distributed computing concepts

Web 2.0 and Grids

- it is recommend to replace many Grid components with their Web 2.0 equivalents:
 - mash-ups could replace workflow,
 - start pages with gadgets and widgets could replace portlets,
 - user generated registries (discovered by standard web search engines) could replace UDDI,
 - and so on

New Directions in Web Storage

Data Intensive (Science) Applications

- data starts on some disk/sensor/instrument and needs to be partitioned
- filtering data of interest and (re)formatting it
- decomposition of data could require iterative steps between communicating processes or could be pleasing parallel
- workflow links above steps with multiple instances of filtering/reducing
- filters are "Maps" or "Reductions" in MapReduce

LHC in the clouds

- classic eScience
- several people have shown, that commercial clouds are perfect for this
- ship the data into the cloud
- no parallel computing necessary
- each node of the cloud analysis part of the data and ships the answers back
- reduction operation to summarize the statistics of this analysis -> physics

"File/Data Repository" Parallelism

Instruments

Map = (data parallel) computation reading and writing data Reduce = Collective/Consolidation phase e.g. forming multiple global sums as in histogram

Communication via Messages/Files

 $Map_1 \downarrow Map_2 \downarrow Map_3 \downarrow Reduce$

LHC Data Analysis Examples

file parallel over events

Map 1:

process raw event data into "events with physics parameters"

Map 2:

process physics into histograms

Reduce 2:

add together separate histogram counts

Cloud Storage Efforts

Problem: Diversity

- terminologies
- authentication methods
- access Control
- Iocation specification
- parallel Uploads/Downloads
- error codes

Lessons Learned

- things get complex fast
 - authentication
 - connection pooling
 - composite objects
 - multi-access concurrency
- developers prefer HTTP
- developers prefer a layered approach
 - quick and easy to get something basic working
 - add on more advanced capabilities as needed

Facts from Industry

- globally distributed nodes under a single namespace
- working with multiple clouds
- fully redundant infrastructure with integrated load balancing
- SAS 70 (auditing standard) compliant network, physical security, encryption and SSL
- policy enabled file replication and geo-distribution
- multi-tenant file system with full directory structure and child account

Information Infrastructure Goals

logical-physical Independence

- any processing on any processing node
- any communications on any communications node
- any storage on any storage node
- completely dynamic logical-to-physical mapping
- any node is usable; any node is disposable
- unlimited Scalability
 - fungibility of all resources within a class
 - transparent scaling across resource pools
- foundation standardization
 - communications standards, processing and storage standards

Cloud Efforts

• OGF:

Cloud Computing Interface Working Group (OCCI)

SNIA:

- Cloud Storage Technical Working Group
- Collaboration:
 - periodic joined meetings

OGF OCCI

developing a new API for interfacing "laaS" Cloud computing facilities that will allow for:

- consumers to interact with cloud computing infrastructure on an ad-hoc basis (e.g. deploy, start, stop, restart)
- integrators to offer advanced management services
- aggregators to offer a single common interface to multiple providers
- providers to offer a standard interface that is compatible with available tools
- vendors of grids/clouds to offer standard interfaces for dynamically scalable service delivery in their products

- identify, develop and coordinate systems standards for Cloud Storage
- produces a comprehensive set of specifications and drives consistency of interface standards and messages across the various Cloud Storage related efforts
- documents system-level requirements and share these with other Cloud Storage standards organizations

SNIA Cloud Storage TWG

use Cases

- description of the various offerings that might be considered "Cloud Storage"
- e.g. Web facing applications, Consumer Clouds, Backup to the Cloud, Archive to the Cloud, Cloud Databases etc.

reference model

 abstract model of cloud storage related services and the interface to them that are candidates for standardization

taxonomy

common terms and definitions for Cloud Storage

Cloud Storage and SRM

SRM and GRID

Task Force: Grid

This Group Has Been Deactivated

- Storage resource management tools are now maturing and becoming more of a "must have" capability
- efficiently utilize resources and expertise to ensure secure, efficient storage and protection of data
- Freeing IT staff from these complicated tasks allows them to focus on core competencies that drive their business forward

Storage Management Challenges

- How much storage do I have available for my applications?
- How is my storage being used?
- How do I know the storage is not the bottleneck for user response time issues?
- Is the storage infrastructure available and performing as needed?
- How do I monitor and centrally manage my replication services?
- Which files must be backed up, archived and retained for compliance?
- How can I more quickly configure and deploy storage resources?

Cloud Storage and SRM

- StoRM on Amazon Simple Storage Service (S3)
 - StoRM translates the Grid authorization rules into the Amazon S3
 - plugin for integration of Amazon S3

Towards the Integration of StoRM on Amazon Simple Storage Service (S3), INFN-CNAF, CHEP'07

Benefit from Industry

- similar problems occur in industry enterprise usage
- simplicity and functionality is required to offer scientists a tool to mash-up services in an ease way
- benefit from knowledge exchange
- influence during industry standardization process
- freeing storage resources from maintenance costs in future

Take care about the cloud! Because the tide turns